Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эксперимент

    В 1912 г. Дж. Дж. Томсон (который, как мы уже говорили выше, открыл электрон) подверг лучи положительно заряженных ионов неона воздействию магнитного поля. Магнитное поле заставляло ионы отклоняться, и в результате этого они попадали на фотопластинку. Если бы все ионы были одинаковыми по массе, то они все отклонились бы магнитным полем на один и тот же угол, и на фотопленке появилось бы обесцвеченное пятно. Однако в результате этого эксперимента Томсон получил два пятна, одно из которых было примерно в десять раз темнее другого. Сотрудник Томсона Фрэнсис Уильям Астон (1877—1945), усовершенствовавший позднее этот прибор, подтвердил правильность полученных данных. Аналогичные результаты были получены и для других элементов. Этот прибор, позволявший разделять химически подобные ионы на пучки ионов с разной массой, получил название масс-спектрографа. [c.167]


    Эксперименты с альфа-лучами в магнитных полях показали, что отклонение этих лучей противоположно отклонению бета-лучей. Следовательно, альфа-лучи заряжены положительно. Далее, поскольку альфа-лучи отклоняются очень слабо, они должны обладать очень большой массой. И, как выяснилось впоследствии, масса альфа-частиц в четыре раза больше массы частиц, названных Резерфордом протонами. [c.153]

    До 1827 года химики были убеждены, что только живой организм может вырабатывать мочевину. Однако в 1827 году немецкий химик Фридрих Велер, к своему собственному изумлению, обнаружил, что на самом деле это не так. Он установил, что если кипятить неорганическое вещество цианат аммония, оно превращается в мочевину. Неорганическое вещество в пробирке превращалось в органическое Велер много раз повторил свой эксперимент, прежде чем решился опубликовать результаты. А когда в 1828 году он все же сделал это сообщение, оно ошеломило научный мир. [c.11]

    Другая тенденция развития метода проб и ошибок — замена вещественных экспериментов мысленными. Объем знаний, доступных современному изобретателю, настолько велик, что результаты многих проб могут быть предсказаны заранее. Изобретатель может при этом опираться не только на личные знания, но и на необъятную научно-техническую литературу, может консультироваться с другими специалистами. Все это позволяет теоретически оценивать большую часть вариантов, не прибегая к реальным, вещественным опытам. Мысленные эксперименты идут намного быстрее, в этом их основное преимущество. Но мысленные эксперименты [c.4]

    Все это звучит удивительно современно, но Демокрит не подкрепил свою теорию экспериментами. Древнегреческие философы вообще не ставили экспериментов, они искали истину в споре, исходя из первопричин . [c.17]

    И все-таки приложив достаточный электрический потенциал, можно пропустить ток через любой материал — твердый, жидкий и газообразный. Первые исследователи электричества в своих еще не очень серьезно обоснованных экспериментах установили, что некоторые жидкости, например растворы солей, проводят электрический ток сравнительно легко. Молния — электрический разряд, образующийся во время грозы,— мгновенно распространяется через толщу воздуха в несколько километров. [c.145]

    Лавуазье решил проверить возможность превращения воды экспериментальным путем. С этой целью он в течение 101 дня кипятил воду в сосуде, в котором водяной пар конденсировался ч возвращался обратно в колбу, так что возможность какой-либо потери вещества в процессе опыта была исключена. И, разумеется, Лавуазье не забывал о точности эксперимента. Он взвешивал и сосуд и воду до и после нагревания. [c.45]

    Шотландский химик Уильям Рамзай (1852—1916) заинтересовался этой проблемой и вспомнил об эксперименте Кавендиша (см. гл 4), который еще в 1785 г. пытался связать азот воздуха с кислородом в свое время эта работа не привлекла внимания химиков. Кавендиш установил тогда, что последний пузырек газа нельзя было заставить соединиться с кислородом ни при каких условиях. Логично было предположить, что этот последний пузырек газа мог быть и не азотом. Возможно, получаемый из воздуха азот содержит в качестве примеси другой газ, плотность которого выше, и именно поэтому полученный из воздуха азот кажется немного тяжелее, чем есть на самом деле. [c.106]


    Это направление в экспериментах и в теории привело к выводу, что определенным химическим реакциям, как и физическим процессам, присуще свойственное только им самопроизвольное направление, приводящее к увеличению энтропии. Однако энтропия представляет собой величину, трудную для непосредственного измерения, поэтому химики начали искать другой, более простой критерий. [c.109]

    Условия эксперимента и выходы продуктов синтеза для каждого из катализаторов даются в табл. 39. [c.113]

    На протяжении всего XIX в. атом считался неделимым, лишенным каких-либо характерных особенностей и не имеющим внутренней структуры. Однако после проведения ряда экспериментов, которые по своей природе даже не были химическими, эта точка зрения была отвергнута. К ломке старых представлений привело изучение электрического тока. [c.145]

    Такое важное открытие должно было сделать Гудьира богачом. В романах обычно так и бывает. Но в действительности, к сожалению, не все идет так гладко. Гудьир всю свою жизнь был по уши в долгах и свои первые эксперименты с каучуком провел, сидя в долговой тюрьме. А потом ему не позволили разбогатеть тяжбы из-за патентов. Когда в 1860 г. он умер, после него осталось долгов на 600 ООО долларов. [c.45]

    Экспериментаторам XIX в. представлялось весьма заманчивым попытаться пропустить ток через вакуум. Но чтобы результаты такого эксперимента были надежными, необходимо было получить достаточно глубокий вакуум. Попытки Фарадея пропустить электрический ток через вакуум окончились неудачей только потому, что ему не удалось получить достаточно глубокого вакуума. [c.147]

    В стране ежегодно выполняется около 150 тыс. научно-исследовательских разработок. Приблизительно две трети их прерываются на стадии эксперимента или испытания опытного образца, и большие государственные средства, отпущенные на создание новой техники, оказываются затраченными впустую. Из тех же разработок, что доходят до стадии внедрения, 85 процентов осваи- [c.3]

    Слушатели получили листки с записью идеи решения. Требовалось отметить плюсами те варианты, которые представляются им подходящими или хотя бы заслуживающими проверки, и минусами — варианты, отвергаемые в принципе. В первой группе было 19 инженеров, в том числе 11 металлургов. Вторая группа включала 8 инженеров и 12 студентов металлургов в группе не было. Результаты эксперимента приведены ниже  [c.5]

    Сначала Ферми действительно подумал, что он синтезировал элемент с номером 93, но результаты эксперимента оказались очень запутанными и привели к еще более драматическому повороту, что будет описано чуть позднее. Именно эти разработки отвлекли на несколько лет внимание ученых от изучения возможностей получения трансурановых элементов. [c.175]

    Приписывая Р. Бэкону убеждение, что залогом прогресса является экспериментальная работа , А. Азимов не указывает, что опыт по Бэкону не только-эксперимент в современном смысле, но и мистическое озарение . [c.181]

    Итальянский ученый Галилео Галилей (1564—1642), изучавший в 90-х годах XVI в. падение тел, первым показал необходимость тщательных измерений и математической обработки данных физического эксперимента. Результаты его работ почти столетие спустя привели к важным выводам английского ученого Исаака Ньютона (1642—1727). В своей книге Начала математики ( Prin ipia Mathemati a ), опубликованной в 1687 г., Ньютон сформулировал три закона движения, которыми завершилась разработка основ механики. На базе этих законов в последующие два столетия развивалась классическая механика. В той же книге Ньютон сформулировал и закон тяготения, который более двух веков также служил вполне приемлемым объяснением движения планет и звездных систем и до сих пор справедлив в пределах представлений классической механики. При выведении закона тяготения Ньютон применил теорию чисел — новую и мощную область математики, которую он сам и разрабатывал. [c.29]

    На протяжении 13 лет, с 1920 по 1933 год, правительство Соединенных Штатов пыталось искоренить пьянство, запретив продажу напитков, которые содержат больше 0,5 /о этилового спирта эта мера получила название сухого закона . Эксперимент потерпел неудачу, потому что алкогольные напитки в больших количествах продавались нелегально. Кроме того, очень много спиртных напитков низкого качества начали производить в домашних условиях. Иногда в мошеннических целях в них добавляли метиловый спирт, который можно было купить законным путем и к тому же довольно дешево такая добавка делала напиток крепче . Но напиток становился от нее ядовитым и это было причиной многих смертельных отравлений. [c.93]

    Шумахер и Штауфф пришли к той же схеме реакции, которая уже приведена выше. В своих экспериментах они почти ие наблюдали образования хлористого гептила. Отсюда следует, что практически все гептильные радикалы немедленно присоединяют к себе двуокись серы, хотя существует также и возможность реакции с хлором. Из этого можио заключить, что гептильные радикалы в растворе четыреххлори- [c.367]

    Благодаря простоте эксперимента, экспрессности, чувствительности и достаточной селективности фотометрический метод широко применяется в практике аналитических лабораторий. [c.458]

    За 100 лет изучения творчества психологи не поставили ни одного эксперимента по решению крупной задачи кооперацией современников . Лишь в последние годы появились сведения об опытах с небольшими, но все-таки реальными изобретательскими задачами. [c.8]

    Парацельс положил начало важному направлению в химии, получившему название иатрохимии (от греческого latpoo — врач). Иатрохимия сыграла важную роль в борьбе с догмами средневековой схоластической медицины. В развитие химических представлений иатрохимики также вносили далеко не только одну мистику. Иатрохимия не только пыталась подвести химическое основание под теорию гуморальной патологии, но и содействовала эмпирическому прогрессу химии. Иатрохимики ввели представления о кислотности и щелочности, открыли много новых соединений, начали ставить первые воспроизводимые (хотя далеко не всегда методологически правильные) эксперименты. К числу иатрохимиков принадлежали Я. Б. Ван Гельмонт, Франциск Сильвия, Анджело Сала и Андрей Либавий, которого А. Азимов ошибочно причисляет к алхимикам. Иатрохимия в определенной мере облегчила развитие технической химии Возрождения, приняв на себя тормозящие химическую мысль традиции мистического теоретизирования, использования не доступного непосвященным языка и т. п. Техническая химия начала беспрепятственно накапливать и описывать эмпирический материал. [c.181]


    В одном из экспериментов эту задачу решала группа в 14 человек. Время, затраченное на решение,— от 2 до 3 часов, в записях много одинаковых вариантов (в одной записи — 22 варианта — и нет правильного ответа). Большинство предложений связано с различными способами замены одной взорванной шторки другой. Многие идеи выходят за рамки ограничений, поставленных условиями задачи (вместо сохранения взрывного затвора предлагают различные механические затворы). Контрольный ответ — а. с. 163487 Способ перекрытия светового пучка с использованием взрывного затвора, например при скоростной киносъемке, отличающийся тем, что с целью многократного использования одного и того же прерывателя светового пучка, взрыв и искровой [c.47]

    Бойль называл себя скептиком , потому что не хотел более слепо следовать представлениям античных авторитетов. В частности, Бойль не принимал утверждения древних философов, считавших, что элементы мироздания можно установить умозрительно. Вместо этого он определял элементы как таковые практическим путем. Элемент, как считалось еще со времен Фалеса (см. гл. 1),— это одно из основных простых веществ, составляющих Вселенную. Но установить, что предполагаемый элемент действительно является элементом, можно только с помощью эксперимента. Если вещество можно разложить на более простые компоненты, следовательно, оно не является элементом, а полученные более простые вещества могут представлять собой элементы или по крайней мере могут считаться таковыми до тех пор, пока химики не научатся разлагать и нх на еще более простые вещества. Если два вещества являются элементами, то они могут соединиться и образовать третье однородное вещество, называемое соединением. Такое соединение молоко разложить на два исходных элемента. Но с этой точки зрения термин элемент имеет только условное значение. Вещество типа, например, кварца может считаться элементом до тех пор, пока химику-экспериментатору не удается получить из него два или более простых вещества. В соответствии с этой точкой зрения считать какое-либо вещество элементом можно было лишь условно, поскольку с развитием науки этот предполагаемый элемент удастся расщепить на еще более простые вещества. Только в XX столетии стало возможным установить природу элементов не в условном плане (см. гл. 13). [c.34]

    Таким образом, проведенный эксперимент подтвердил предположение о том, что одна часть водорода (по весу) соединяется с 8 частями (также по весу) кислорода. А если это предположение справедливо, то, следовательно, 1 атом кислорода в 8 раз "иржелее двух атомов водорода взятых вместе и, таким образом, в 16 раз тяжелее одного атома водорода. Если вес водорода принять за единицу, то атомный вес кислорода составит 16, а не 8. [c.59]

    Однако вскоре выяснилось, что это последнее его утверждение ошибочно. Одному из учеников Дюма (кстати сказать, восторженному стороннику Берцелиуса) Огюсту Лорану (1807—1853) удалось в 1836 г. заместить несколько атомов водорода в молекуле этилового спирта на атомы хлора, причем значительного изменения свойств соединения такое замещение не вызвало. Этот эксперимент противоречил теории Берцелиуса хлор считался отрицательно заряженным, а водород — положительно заряженным элементом. Более того, в этом хлорированном соединении углерод должен был соединяться непосредственно с хлором, но как же это могло осуществиться, если [c.78]

    В 1894 г. Рамзай повторил эксперимент Кавендиша, выделил оставшийся пузырек газа и провел его анализ новым методом, во времена Кавендиша еще неизвестным. Рамзай нагрел этот газ, изучил его спектр. В результате выяснилось, что оставшийся пузырек представляет собой новый газ, плотность которого несколько выше, чем у азота. Содержание его в атмосфере равно примерно 1 % (по объему). Он химически инертен, не реагирует ни с одним другим элементом. По этой причине газ получил название аргон (от греческого ариое — инертный). [c.106]

    Используя такой калориметр (от латинского alorimeter — измерение тепла), Бертло тщательно измерил количество теплоты, выделяемой в результате сотен различных химических реакций. Подобные эксперименты независимо от Бертло провел также датский химик Ханс Петер Юрген Юлиус Томсен (1826—1909). [c.109]

    Первые эксперименты с фторорганическими соединениями провел американский химик Томас Мидгли-младший (1889—1944). В 1930 г. он получил фреон, молекула которого состоит из атома углерода и присоединенных к нему двух атомов хлора и двух атомов фтора. Фреон легко сжижается, следовательно, его можно использовать в качестве холодильного агента вместо таких легко сжижаемых газов, как аммиак и диоксид серы. В отличие от этих газов фреон не имеет запаха, нетоксичен и не воспламеняется. В настоящее время фреон почти повсеместно применяется в домашних холодильниках и кондиционерах. [c.144]

    В 1886 г. Гольдштейн проводил эксперименты с решетчатым катодом в вакуумной трубке. Он нашел, что в то время, как катодные лучн распространяются только в одном направлении — к аноду, через отверстия в катоде проходят другие лучи, которые распространяются в обратном направлении. [c.151]

    Типичная задача на синтез измерительной системы. Измерение, как и изменение, всегда связано с преобразованием энергии. Но в задачах на изменение необходимость преобразования энергии видна намного отчетливее, чем при решении задач на измерение. Поэтому при решении задачи 4.5 методом перебора вариантов даже не вспоминают о законе обеспечения сквозного прохода энергии. В эксперименте задача была предложена четырем заочникам, живущим в разных городах и только приступающим к изучению ТРИЗ. Результат выдвинуто 11 идей, правильного решения нет. Предложения характеризуются неопределенностью Может быть, острые и тупые кнопки отличаются по весу Тогда надо проверить возможность сортировки по весу... Четыре заочника второго года обучения дали правильные ответы, причем двое них отметили тривиальность задачи. В самом деле, если применять закон о сквозном проходе энергии, ясно, что энергия должна проходить сквозь основание кнопки и стерженек, а затем поступать на измерительный прибор. При этом между острием стерженька и входом измерительного прибора желательно иметь свободное лространство (воздушный промежуток), чтобы не затруднять движения кнопок . Цепь кнопка — острие стерженька — воздух — вход прибора может быть легко реализована, если энергия электрическая, и значительно труднее — при использовании других видов энергии. Следовательно, надо связать процесс с потоком электрической энергии в каких случаях ток зависит от степени заостренности стерженька, контактирующего с воздухом Такая постановка вопроса, в сущности, содержит и ответ на задачу надо использовать коронный разряд, сила тока в [c.65]

    Для синтолового синтеза Фишер и Тропш сначала пропускали смесь окиси углерода и водорода при 400° и 100 аг над железными стружками в присутствии щелочей без циркуляции . В последующем они перешли к циркуляционной схеме с возвратом газа в реактор после конденсации продуктов реакции. Поскольку исследователи проводили эксперименты в закрытой аппаратуре без ввода дополнительных количеств свежего газа, то давление в системе падало в соответствии с объемом вступивших в реакцию газовых компонентов. В ходе экспериментов были установлены два важных факт а-. 1) реак- [c.73]

    Если в процессе синтеза газы и пары долго находятся в реакционном объеме, метанообразование усиливается. Это явление можно объяснить тем, что в этом случае значительное количество водорода все же подвергается хемосорбции, что и приводит к деструктивному гидрированию углеродных цепей. Эксперименты Краксфорда хорошо согласуются с тем фактом, что при воздействии водорода на парафиновые углеводороды в присутствии, катализатора Фишера — Тропша уже при 200° проходят гидрокрекинг и одновременно превращение параводорода. Это показывает наличие условий для хемосорбции водорода. [c.87]

    Проведенные "мероприятия действительно привели к эначительному увеличению выхода олефинов особенно при синтезе под средним давлением. Этот вопрос будет освещен более подробно при описании указанного синтеза. В табл. 32 приведены результаты полузаводских опытов синтеза под нормальным давлением [50]. Эксперименты велись на водяном газе состава 1,3 Нг-Ы.О СО. Выходы, считая на 1 нм газа, не со- [c.104]

    НИЧНОГО трения вязкость и противоизносные свойства не всегда являются тождественными понятиями. Для того чтобы экспериментально показать это, мы взяли несколько топлив различной и близкой вязкости и испытали их на лабораторных установках. Результаты испытаний представлены на рис. 35. Как видно, топлива одного уровня вязкости могут в десятки и сотни раз отличаться друг от друга по противоизносным свойствам и, наоборот, топлива могут обладать практически одинаковыми противоизносными сврйствами, но значительно отличаться по уровню вязкости. Этими же экспериментами убедительно показано и то, что на лабораторных установках воспроизводится граничный, а не гидродинамический режим трения. [c.64]

    Психологи пытались воспроизвести в эксперименте процесс решения задач. При этом обычно использовались не изобретательские задачи, а головоломки, загадки. Психологи-бихевиористы, считающие, что нужно просто наблюдать за поведением человека (от английского behaviour — поведение), констатировали чисто внешние черты процесса решения человек сосредоточивается и перебирает вариант за вариантом. Гештальт-психологи объясняли суть дела так человек создает мысленный образ (Gestalt — нем.) объекта, о котором говорится в задаче, а затем перестраивает этот образ, меняет связи между его элементами, и вот неожиданно возникает новое понимание задачи, усматривается некая связь между элементами или новая особенность объекта и его элементов. [c.7]

    Наиболее обстоятельные эксперименты провел в 20—30-х годах немецкий психолог К. Дункер. Как и его коллеги, он работал с простыми задачами и головоломками. Предполагалось, что полученные выводы удастся распространить на решение более сложных задач. Между тем многовековая история изобретательства отнюдь не давала тому оснований. Опыт свидетельствует, что решение простых задач доступно очень многим. Не имеет практического значения, будет ли получено решение со второй или с десятой попытки вся проблема — в неясности механизма решения трудных задач ценой в тысячи проб. При решении таких задач проявляется что-то еще кроме перебора вариантов. Нередко решение сложной задачи оказывается очень простым не требовалось никаких особых знаний, чтобы найти нужный ответ, но многие пытались — и не могли решить задачу, а какой-то человек ее решил. Как это происходит Почему это не повторяется Почему человек, решивший трудную задачу озарением , беспомощен при решении следующей задачи Вообще почему трудны трудные задачи ., [c.7]

    Появление методов активизации перебора вариантов вызвало большие надежды. Казалось, найден простой и универсальный усилитель интеллекта . Достаточно повысить уровень шума — погасить несложными приемами психологическую инерцию, уговорить специалистов смелее выходить за рамки своей специальности, пришпорить процесс генерирования идей — и под силу будет решение любой задачи... В фантастическом рассказе Уровень шума , написанном Р. Джоунсом в середине 50-х годов, психолог Бэрк помогает решить проблему управления гравитацией. И когда эксперимент успешно Завершается, Бэрк говорит Мы расшатали ваши умственные фильтры, и в результате получился ответ. Метод сработал, он будет действенным всегда. Все, что необходимо сделать, это избавиться от лишнего груза предрассудков, от окаменевшего мусора в голове, измеиить произвольную настройку ваших умственных фильтров в отношении других вещей, которые вам всегда хотелось сделать, и тогда удастся найти нужный ответ на любую проблему, которую вы только пожелаете исследовать . И растроганный физик Нэгл отвечает Если мы научимся использовать максимальный уровень шума человеческого ума, сможем покорить всю вселенную . [c.29]

    Как практически принимать эти гипотетические сигналы Психолог Д. Маккиннон (США) считает, что ответ на этот вопрос может дать изучение переходного состояния между сном и бодрствованием. В серии экспериментов Маккиннон во время гипнотического сеанса внушал испытуемым содержание будушего сновидения. На следующий день испытуемые представляли свои отчеты. У одних сновидения точно соответствовали внушенной картине, у других произошли значительные деформации. Характер этих деформаций и был для Маккиннона главным и самым интересным результатом эксперимента. Тут ему виделась аналогия с выбором при решении задач почему выбирают один вариант и отбрасывают другой... [c.33]

    Прежде всего надо выбрать наиболее приемлемое для условий задачи физическое поле. Существует много физических полей гравитационное, электромагнитное, тепловое, акустическое, силовое, и т. д. Гравитационное поле явно не подходит, об этом сказано в условиях задачи (плотность веществ одинаковая). Попробуем для построения веполя применить наиболее управляемое электромагнитное поле. Можно ставить решающий эксперимент если кора и древесина электризуются по-разному, задача решена. [c.77]


Смотреть страницы где упоминается термин Эксперимент: [c.90]    [c.156]    [c.132]    [c.441]    [c.592]    [c.59]    [c.5]    [c.13]    [c.31]    [c.42]   
Смотреть главы в:

Селективная фурье-спектроскопия ямр и ее приложение к исследованию процессов молекулярной динамики -> Эксперимент

Равновесия в растворах -> Эксперимент

Равновесия в растворах -> Эксперимент

Хелатообразующие ионообменники -> Эксперимент

Хелатообразующие ионообменники -> Эксперимент

Хелатообразующие ионообменники -> Эксперимент

Конвекция Рэлея-Бенара Структуры и динамика -> Эксперимент

Методы исследования нуклеиновых кислот -> Эксперимент


Методы кибернетики в химии и химической технологии (1971) -- [ c.0 ]

Физическая химия. Т.1 (1980) -- [ c.0 ]

Методы кибернетики в химии и химической технологии (1971) -- [ c.0 ]

Математическое моделирование в химической технологии (1973) -- [ c.0 ]

Книга для начинающего исследователя химика (1987) -- [ c.0 ]

Общая и неорганическая химия (1959) -- [ c.10 , c.34 ]

Мировоззрение Д.И. Менделеева (1959) -- [ c.163 ]

Введение в моделирование химико технологических процессов Издание 2 (1982) -- [ c.30 ]

Методы кибернетики в химии и химической технологии 1968 (1968) -- [ c.0 ]

Методы кибернетики в химии и химической технологии Издание 3 1976 (1976) -- [ c.0 ]

Статистические методы оптимизации химических процессов (1972) -- [ c.0 ]

Автоматизация биотехнологических исследований (1987) -- [ c.12 , c.16 , c.24 , c.29 ]

Биология с общей генетикой (2006) -- [ c.7 ]




ПОИСК







© 2025 chem21.info Реклама на сайте