Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пузырьки газа

    Для восстановления молибдена в полученном растворе используют редуктор Джонса, Над краном помещают пробку из стеклянной ваты и наполняют бюретку амальгамированным цинком почти до верха, В промежутках между определениями бюретку с цинком заполняют водой. Перед определением воду спускают и вместо нее пропускают горячий раствор серной кислоты (1 20) до тех пор, пока весь цинк не будет покрыт пузырьками газа (водорода). Затем бюретку вставляют на пробке в колбу Бунзена, в которую предварительно наливают 100 мл раствора железоаммонийных квасцов, Колбу Бунзена соединяют с аппаратом Киппа, в котором получают двуокись углерода, и продувают ею раствор в течение всего времени опыта со скоростью 2—3 пузырька в секунду. [c.118]


    В последнее время для очистки сточных вод от взвешенных частиц делают попытки использовать химическую, биологическую и ионную флотацию. Химическая флотация основана на введении в воду соединений, которые в реакциях с водой или друг с другом образуют пузырьки газов — О2, СЬ, СО2 и т. д. Биологическая флотация основана на деятельности микроорганизмов в воде. На поверхности частиц активного ила или осадка образуются пузырьки газов, которые уносят частицы в пенный слой, где они отделяются и обезвоживаются. Ионная флотация достигается введением в воду совместно с воздухом соединений, имеющих заряд, противоположный заряду извлекаемых ионов, например металлов Мо, V, Pt и др. Процесс эффективен при концентрации извлекаемых ионов (0,1 — 1) 10-2 моль/л. [c.478]

    Степень перегрева кипяшей жидкости будет зависеть от средней величины радиуса закругления неровности стены или пузырьков газа, пристающих к стенке, на которой может происходить испарение жидкости. Изучение влияния, которое оказывает на образование паровых пузырьков качество поверхности нагрева, показало, что поведение жидкости по отношению к поверхности нагрева, т. е. в основном поверхностное натяжение жидкости и смачиваемость поверхности нагрева должны иметь большое значение. Если учесть, что пузырьки пара на поверхности нагрева имеют форму, изображенную на фиг. 45, причем соотношение размеров изображенных пузырьков ориентировочно соответствует действительным отношениям, то становится ясным, что возникновение паровой пленки в случае Ь едва ли возможно или же ее возникновение значительно затруднено по сравнению со случаем а, когда сама форма пузырька пара содействует соединению отдельных пузырьков и образованию слоя пара. Пузырьки именно такой формы а образуются при кипении, например, ртути. [c.104]

    При дальнейшем возрастании скорости потеря напора остается постоянной, но расширение ожи-женного слоя продолжается. Образуются пузырьки газа, которые поднимаются через слой, и общая картина очень напоминает кипящую жидкость. [c.253]

    Если в результате химической реакции возникает электрический ток, то естественно предположить, что и электрический ток может изменять материю и вызывать химическую реакцию. И действительно, всего через шесть недель после первого описания Вольтой своей работы два английских химика — Уильям Николсон (1753—1815) и Энтони Карлайл (1768—1840) продемонстрировали наличие такой обратной зависимости. Пропустив электрический ток через воду, они обнаружили, что на электропроводящих полосках металла, опущенных в воду, появляются пузырьки газа. Как выяснилось, на одной из полосок выделяется водород, на другой — кислород. [c.58]

    После того как вся кислота прибавлена и выделение СОг ослабеет, пускают воду в холодильник 3 и очень медленно нагревают содержимое колбы, регулируя нагревание в зависимости от скорости прохождения пузырьков газа через поглотители. В конце концов [c.181]

    Ответ. Электролиз. Вместо краски — мелкие пузырьки газа, выделяющиеся на макете-электроде. [c.154]

    Из уравнения (21) видно, что пропорционально коэффициенту диффузии в степени /2, что подтверждается экспериментально. Конечно, уравнение (21) можно непосредственно использовать для вычисления только в тех случаях, когда известно t, как, например, в случае движения пузырьков газа. При подстановке уравнения (9) в (21) получим для данного случая  [c.18]


    Давлением насыщения рнас является давление газа, находящегося в термодинамическом равновесии с пластовой нефтью. Если давление на пластовую нефть становится ниже давления насыщения, то из нефти начинает выделяться растворенный газ. Величина р связана с количеством растворенного газа и химическим составом газа и нефти. Поэтому величину р кс рекомендуется формулировать как давление, три котором весь имеющийся газ полностью растворяется в нефти, или — давление, при котором начинают всплывать из нефти первые пузырьки газа. [c.16]

    Тейлор [99] обобщил выражение (2.9) для эмульсий несмешивающихся жидкостей и жидкостей с пузырьками газа  [c.61]

    Поршневой режим наблюдается, если пузырьки газа достигают таких размеров, что они могут занять все поперечное сечение узкого сосуда. В этом случае в сосуде поднимаются чередующиеся пузыри газа и пробки из твердых частиц. В больших сосудах комки частиц поднимаются, а затем опускаются, когда под ними лопаются газовые пузыри. Этот процесс подобен ударам при выбросах в кипящих жидкостях. Потеря напора при таком режиме неустойчива и обычно значительно больше, чем при спокойных условиях. Данный режим возникает, когда частицы слишком крупны или слой не содержит достаточного количества более тонкого материала. Поршневой режим чаще возникает при большом значении соотношения высоты к диаметру, но смягчается при снижении скорости газа. [c.255]

    Установлена значительная разница между коэффициентами теплоотдачи для периферийной поверхности, например поверхности стенки сосуда, и поверхности теплообменных труб, расположенных внутри слоя. Указанные коэффициенты будут обозначаться соответственно через и h . Это различие может быть объяснено тенденцией пузырьков газа двигаться предпочтительно в центральной части слоя, а не у стенок, где гидравлическое сопротивление больше. [c.272]

    Там, где водоподготовка не производится, рекомендуется для очистки систем оборотного водоснабжения от отложений применять гидропневматическую промывку. При этой промывке через очищаемый участок системы, не выключая его из работы, пропускают одновременно и воду и сжатый воздух. Воздух, попадая в воду, расширяется, скорость движения воды увеличивается. Возникают удары о стенки системы пузырьков газа и струй воды, в результате чего отложения разрушаются. Промывка производится в несколько кратковременных по 3—5 мин приемов с такими же перерывами. Количество вводимого воздуха по отношению к воде составляет 2 1, считая по объему в м [131]. Давление воздуха должно быть на 0,5—1 кгс/см выше давления воды. [c.335]

    Образующиеся продукты сгорания проходят зону дожига и поступают в специальный абсорбер (рис. 46). Камера абсорбера рассчитана на 75—100 мл раствора гидроокиси натрия. Продукты сгорания вводят в камеру через центральную трубку У с пористой тарелкой 5. В основание камеры вмонтирован кран для отвода отработанного раствора. Через трубку 3 вводят свежий раствор едкого натра. Платиновые электроды 4 расположены непосредственно под распределительной тарелкой, так что они не соприкасаются с пузырьками газов. Камера окружена водяной рубашкой для поддержания постоянной температуры. Газы отводятся через трубку 2. [c.139]

    Стадия выделения газа. Образовавшиеся молекулы водорода пересыщают раствор и выделяются в виде пузырьков газа  [c.622]

    Проверьте, взаимодействует ли образец с кислотой по методике, описанной ниже. На протекание химической реакции указывает выделение пузырьков газа. [c.123]

    Важный шаг в этом направлении в начале ХУП1 в. сделал английский ботаник и химик Стивен Гейле (1677—1761). Он изобрел прибор для собирания газов над водой. Этот прибор известен ам под названием пневматической ванны . Пары, образующиеся я результате химической реакции, Гейле отводил через трубку в сосуд с водой, опущенный вверх дном в ванну с водой. Пузырьки газа поднимались в верхнюю часть сосуда и вытесняли оттуда воду. Таким образом Гейле собирал газ или газы, образующиеся в результате реакции. Сам Гейле не идентифицировал собранные газы и не изучал их свойств, однако сконструированный им прибор для собирания газов сыграл важную роль в развитии пневматической химии. [c.39]

    Испаритель представляет собой пустотелый цилиндрический аппарат диаметром 2,6 и 3,2 м и высотой около 14 м, покрытый тепловой изоляцией. Внутри испарителя смонтирован желоб, опускающийся по стенке аппарата спиралеобразно вниз. На этот желоб попадает газожидкостная смесь, поступающая из реактора в испаритель. Стекая по желобу вниз, жидкость освобождается от пузырьков газа. Уровень в испарителе контролируется с помощью поплавкового или пьезометрического уровнемера. В верхней части испарителя установлен предохранительный клапан. В газовое пространство испарителя предусмотрена подача пара (на случай аварийных ситуаций). Для контроля температуры в верхней и нижней частях испарителя установлены термопары. [c.131]

    Брахиантиклиналь аналогичного строения имеется на Дуз-лаке, находящемся в 8 км севернее Дагестанских Огней. Здесь имеется площадка радиусом около 600 м, в пределах которой наблюдаются многочисленные выходы соленых источников со столь бурными выделениями пузырьков газа, что вода кажется кипящей. [c.35]

    Далее рассматривается в основном именно макроуровень, как представляющий наибольший интерес и значительные сложности. Анализ процессов на таком уровне предполагает ряд этапов. В начале декомпозиция, т. е. выделение типичного и представительного в отношении физического механизма процесса элемента, например отдельного зерна катализатора или пузырька газа в барботажном слое и т. п. Затем анализ макрокинетики процессов в выделенном элементе при различных физических воздействиях и выбор оптимального. И, наконец, синтез - распространение полученных результатов на всю рабочую зону или весь аппарат.  [c.7]


    Вязкость газовых эмульсий принимают равной вязкости (или кажущейся вязкости, если дисперсионная среда относится к неньютоновским жидкостям) чистой жидкости, хотя наличие большого количества пузырьков газа приводит к незначительному повышению вязкости. [c.145]

    Растворимость газов в жидкостях. Растворение газов почти всегда сопровождается выделением теплоты сольватации их молекул. Поэтому, согласно принципу Ле Шателье, повышение температуры понижает растворимость газов (рнс. 39). Примером служит процесс образования пузырьков газа при нагревании водопроводной или речной воды. Однако известны случаи, когда нагревание вызывает рост растворимости газов (растворение благородных газов в некоторых органических растворителях). [c.143]

    Удаление струи из пространства, занятого газом, без увлечения пузырьков газа и без задержки жидкости не представляет никаких трудностей. Для этого требуется лишь капиллярная трубка диаметром чуть больше диаметра самой струи. Удаляемую жидкость в этой трубке следует поддерживать на определенном уровне с помощью специального устройства с постоянным уровнем перетока. На рис. 1У-4 показано устройство для вывода струи из газовой камеры в условиях поддержания правильного и неправильного уровня стекающей жидкости в приемном капилляре. [c.85]

    При барботаже газа жидкость перемешивается пузырьками, например, в аэрируемых емкостях или в тарельчатых колоннах. Жидкость может перемешиваться и специальными механическими мешалками, в том числе и ири одновременном вводе в нее пузырьков газа. [c.98]

    Очень высокие локальные температуры могут возникать при адиабатическом сжатии пузырьков газа, находящихся в жидкости при ее кипении. [c.29]

    Давление газа в пространстве между менисками льда определяли следующим образом. После окончания опытов вынимали капилляр из камеры и измеряли при комнатной температуре Гк длину пузырьков газа 1 и /2 между менисками жидкости в капилляре 5 (см. рис. 6.8). Обламывали свободный конец капилляра и снова измеряли длину пузырька 2а (> 2)-Отсюда при 7 = Т вычисляли давление газа в капилляре Р = Ра(/2а/4), где Ра — атмосферное давление. Давление при температуре проведения опыта Т рассчитывали по формуле, следующей из газовых законов с учетом влияния растворения воздуха за время проведения экспериментов  [c.114]

    Оценки линейного натяжения дают для воды и водных растворов значения х, по порядку величину равные 10 °— 10 Н [568]. Таким образом, вклад третьего члена в правой части уравнения (13.18) становится ощутимым при г<10 — 10 см, т. е. для капель и пленок очень малого радиуса. Весьма заметным проявление линейного натяжения -может быть, в частности, при флотации — на начальной стадии сближения пузырьков газа с частицами, а также при конденсации воды на твердых поверхностях — на стадии образования зародышей конденсата. [c.224]

    При проектировании реакторов описываемого типа следует иметь в виду, что характер газового потока и размер пузырьков зависят от скорости потока, определяющей величину межфазной поверхности. Процессы, в которых большую роль играет массообмен, следует проводить при турбулентном режиме верхней границей служит скорость, при которой начинают образовываться газовые пробки. Размеры пузырьков зависят от свойств жидкости — ее вязкости, плотности, поверхностного натяжения и т. д. Высота столба жидкости, зависящая от степени насыщения ее пузырьками газа, также влияет на работу аппарата. [c.360]

    Пневматическое перемешивание осуществляется в аппарате, на дне которого уложен барботер, т. е. труба или несколько труб с мелкими отверстиями (рис. 30). В качестве перемешивающего агента могут применяться водяной пар, сжатый воздух или инертный газ. Водяной нар применяется лишь в том случае, если допустимы обводнение перемешиваемой жидкости II ее нагрев. Перемешивание воздухом возможно, если перемешиваемые жидкости не окисляются при температуре перемешивания. Пузырьки газа, выходящие из отверстий, бар-ботируют через жидкость, перемешивая ее. Барботеры могут иметь форму [c.50]

    Фильтрационный эффект состоит в том, что при фильтровании чистых жидкостей через пористую перегородку сопротивление ее иногда неожиданно и резко возрастает. Это можно объяснить, в частности, возникновением поверхностных процессов на границе раздела твердой и жидкой фаз. Однако наиболее вероятной причиной увеличения сопротивления пористой перегородки является, по-видимому, выделение из жидкости пузырьков растворенного в ней газа статическое давление жидкости по мере прохождения ее через пористую перегородку падает и растворимость газа в жидкости соответственно уменьшается. Выделение газа из жидкости особенно вероятно в том случае, когда фильтрование проводят в вакууме. Не исключена возможность, что в некоторых опытах по разделению суспензий фильтрованием увеличение удельного сопротивления осадка частично можно объяснить выделением пузырьков газа как в фильтровальной перегородке, так и в самом осадке. [c.206]

    Газообразное вещество пропускают в жидкость. Газоподводящая трубка должна быть достаточно глубоко опущена в жидкость, чтобы выходящие пузырьки газа, проходя через жидкость, успевали бы с [c.235]

    Через промывную склянку II должно проходить не более 3—4 пузырько газа в 1 сек. [c.181]

    Для объяснения явления перенапряжения предложен ряд теорий. Так, перенапряжение водорода может быть объяснено запа, дыванием процессов соединения электронейтральных атомов водорода, образующихся при разряде Н+-ионов, в молекулы Нп и последующего отрыва пузырьков газа от поверхности электрода. Согласно более новой теории, разработанной академиком А. Н. Фрумкиным, детально исследовавшим явления перенапряжения, оно объясняется запаздыванием процесса разряда ионов водорода .  [c.431]

    Метод пенного фракционирования заключается в адсорбции П.ЛВ на границе раздела фаз вода — воздух и непрерывном снятии поверхностного слоя. При барботировании мелких пузырьков газа через водный раствор ПАВ последние концентрируются на стейках пузырьков и с ними уносятся к иоверхностн воды, увлекая за собой сопутствующие нм загрязнения. [c.220]

    Сиязапниес этим явлеппя, такие, как очевидная неспособность жидкостей выдерживать растяжение, а также процесс образования пузырьков в жидкостях прн больших скоростях сдвига, были исследованы Харвеем с сотр. [81]. Показано, что эти явления обуслонлены микроскопическими пузырьками газа, образующимися на поверхности. В отсутствие таких пузырьков, как показал Бриггс [82], вода и органические н идкости обладают воспроизводимой прочностью на разрыв порядка 100—300 атм, что можно было бы оншдать, исходя из теоретических соображений. [c.558]

    А. В. Непогодьев [95] выделяет в поршневом двигателе четыре зоны, существенно различающиеся по условиям, влияющим на окисление масла. Первая зона — это картер и основная система циркуляции масла. Масло здесь, как правило, имеет температуру от 70 до 150 °С в зависимости от типа двигателя. Оно насыщено пузырьками газов и интенсивно разбрызгивается. Вторая зона — пространство между юбкой поршня и гильзой. Здесь температура достигает 150°С и более, масло контактирует с газами, прорывающимися из камеры сгорания. Третья зона — поршневые кольца. В этой зоне температура также составляет 150°С, и только в канавках первого поршневого кольца она возрастает до 180—270 °С. Наконец, четвертая зона — это стенки гильзы цилиндра, где образующаяся масляная пленка 7< онтактирует о горячими газами при еще более высоких температурах. Поверхностный слой масляной пленки, образующейся на зеркале цилиндра, нагревается на глубину 1—2 мкм до 300— 350 °С. Расчетами на ЭВМ было показано, что интенсивность термоокислительных процессов в такой пленке только за счет более высокой температуры должна быть на 4—8 порядков выше, чем в картере, и на 2—5 порядков выше, чем в зоне поршневых колец. Таким образом, термоокислительные процессы, происходящие с маслом в третьей и четвертой температурных зонах, являются основными и лишь в незначительной степени зависят от окисления, происходящего в картере двигателя. [c.72]

    Как указано выше, пропитанная бумага, используемая для изоляции кабелей, содержит тяжелые малоочищенные масляные дистилляты. Такие масла перед использованием обычно тщательно дегидратируют и деаэрируют. Следует обратить внимание на возможность повреждения бумажной изоляции, по-видимому, тихими разрядами. Тихие разряды, происходящие в слабых местах изоляции, вызывают появление пузырьков газа [124—127] и смолистых полимеров, которые (особенно первые) служат признаком дальнейших, более разрушительных разрядов. Интересно заметить, что ароматические и полиароматические углеводороды сами не только не выделяют газа, но и способствуют подавлению газообразования в масляных смесях, содержащих эти углеводороды. Окисляемость описываемых масел тоже имеет практическое значение увеличиваются электропроводность, диэлектрические потери и значительно увеличивается смачиваемость водой пропорционально небольшому увеличению кислотности [128—134]. [c.567]

    Высокослойные барботажные колонны применяют в промышленности в качестве химических реакторов, абсорберов и др. Используют барботажные колонны диаметром порядка одногО" метра и более при отношении высоты барботажного слой к диа- метру колонны L/Z)k<7—10. Благодаря перемешиванию восходящими пузырьками газа жидкость циркулирует в вертикальном направлении, в значительной степени перемешиваясь по высоте аппарата. Это обстоятельство ограничивает применение высокослой-ных барботажных колонн для массообменных процессов. [c.195]

    Любые гетерогенные процессы, например разложение или образование твердого химического соединения, растворение твердых тел, газов и жидкостей, испарение, возгонка и т. п., а также важные процессы гетерогенного катализа и электрохимические процессы, проходят через поверхности раздела твердое тело—газ, твердое тело—жидкость, твердое тело—твердое тело, жидкость— жидкость или жидкость—газ. Состояние вещества у поверхности раздела соприкасающихся фаз отличается от его состояния внутри этих фаз вследствие различия молекулярных полей в разных фазах. Это различие вызывает особые поверхностные явления на границе раздела фаз например на границе жидкости с газом или с другой жидкостью действует поверхностное натяжение. Поверхностное натяжение определяет ряд важных свойств, например шарообразную форму пузырьков газа или капель жидкос1и (в туманах, эмульсиях, при распылении расплавленных стекол, при образовании новых фаз и т. п.). [c.435]

    Растсоренне газов в воде представ./ яет собой экзотермический процесс. Поэтому растворимость газов с повышением температуры уменьшается. Если оставить в теплом помещоши стакан с холодной водой, то внутренние стенки его покрываются пузырьками газа—это во.здух, который был растворен в воде, выделяется из нее вследствие нагревания. Кипячепнсгл можно удалить из воды весь растворенный в ней воздух. [c.221]

    Газовые эмульсии — это дисперсные системы, состоящие из пузырьков газа (дисперсная фаза) и жидкости (дисперсионная среда). Содержание газовой дисперсной фазы несколько процентов (редко достигает десятков процентов). В газовой эмульсии интенсивно протекают процессы седиментации и перераспределения пу-зы])ьков газа по размерам, что обусловлено большой разностью плотностей ее фаз. [c.145]

    Течение смачивающих пленок под действием T = grada(7 ) носит название термокапиллярного течения [61]. Оно исследовано путем измерения скоростей смещения пузырьков газа в тонких цилиндрических капиллярах под действием постоянного градиента температуры V7 = onst. Смещение пузырька происходит в результате перегонки пара на холодный мениск и термокапиллярного течения пленки, также направленного в холодную сторону, так как да дТ)<0. Скорость термокапиллярного течения, пересчитанная на скорость смещения пузырька VT=qr равна  [c.29]

    В работе Сименса и Вайсапоказано, что коэффициент продольной диффузии пропорционален расходу газа и диаметру его пузырьков. В ламинарном режиме, когда пузырьки газа свободно поднимаются вверх, увеличение расхода газа приводит к увеличению коэффициента диффузии. В турбулентном режиме величина этого коэффициента с ростом скорости газа увеличивается до 70 см1сек, причем скорость подъема пузырьков уже не возрастает. [c.48]

    Таким образом, если при фильтрации условия внутри порового канала по сравнению с условиями в месте контакта газа и жидкости будут такими, что раствор газа в жидкости окажется пересыщенным, из него будет в ы-деляться газ. При отсутствии в жидкости взвешенных частиц, что характерно для опытов по фильтрационному эффекту, образование газовых пузырьков вне стенок поровых каналов маловероятно, так как давление создаваемое поверхностным натяжением внутри небольшого газового пузырька должно быть большим. Поэтому, выделение пузырьков газа происходит на стенках поровых каналов, где благодаря их искривленности будут условия для образования пузырьков. Центрами выделе ния пузырьков газа могут быть также остатки воздуха заполнявшего поры фильтрующей перегородки. Образование газовых пузырьков на стенках поровых каналов наблюдал через прозрачный фильтр Менер Мы также наблюдали образование и накапливание паровоздушных пузырьков при фильтрации дизельного топлива через прозрачный фильтр. На фиг. 7 пр во1дится фотография прозрачного фильтра при стократном увеличении, полученная нами при фильтрации через него под вакуумом [c.31]

    В течение 4 ч 84 г технического третичного бутилоиого С1шрта (что соответствует 74 г абсолютного третичного бути юиого спирта). Образующийся изобутилен, пройдя обратный холодильник, две и-образные трубки, наполненные безводным зерненым хлористым кальцием (для освобождения от паров воды), и счетчик пузырьков газа, поступает в газометр (рис. 79). Образующиеся пары воды, конденсируясь в обратном холодильнике, возвраща- [c.348]


Смотреть страницы где упоминается термин Пузырьки газа: [c.493]    [c.85]    [c.72]    [c.179]    [c.463]    [c.140]   
Абсорбция газов (1966) -- [ c.512 , c.513 ]




ПОИСК





Смотрите так же термины и статьи:

Давление пузырьке газа

Конденсация пузырьке газа

Окисление углерода в объеме металлической ванны на поверхности раздела с пузырьками газа

Пересыщение пузырьке газа

Пузырьки газа диаметр

Пузырьки захват газа жидкостью

Серная кислота пузырьке газа

Стадии изучения состава газов в пузырьках, включенных в стекло фиг

Термодинамический анализ возможности прилипания частицы к пузырьку газа

Уравнения гидромеханики монодисперсных смесей жидкости с пузырьками газа или пара

Флотация пузырьками, выделяющимися из пересыщенных растворов газов (воздуха) в воде



© 2025 chem21.info Реклама на сайте