Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение ароматического ядра пространственное молекул

    Обратимости процесса нитрования должно способствовать, в частности, присутствие в орто-положениях по отношению к нитрогруппе заместителей, способных нарушить в силу пространственных препятствий сопряжение ее с ароматическим ядром, а также электронодонорных заместителей, компенсирующих оттягивание нитрогруппой электронов от ароматического ядра. Эти особенности строения молекулы, благоприятствующие отщеплению нитрогруппы, характерны для всех нитросоединений, претерпевающих изомерные превращения при действии кислот. На этом основании для рассмотренных выше процессов изомеризации был предложен [6] механизм, допускающий последовательное протекание реакций денитрования и нитрования. Например  [c.96]


    Цвет повышается и в том случае, когда пространственные помехи возникают в цепи сопряжения красителя и вызывают поворот целого ароматического ядра относительно другой части молекулы. Так, бесцветность бензофенона можно объяснить нарушением плоскостного строения частей молекулы вследствие поворота отдельных ее частей, в то время как флуоренон, в котором вращение исключено, имеет оранжевую окраску  [c.265]

    Характер реагирования замещенных ароматических соединений с различными реагентами может быть установлен исходя из двух подходов 1) строение ароматического соединения (оно оценивается распределением электронной плотности и пространственной конфигурацией молекулы) определяет место вступления реагентов в ароматическое ядро, направление атаки зависит не только от ориентирующего влияния заместителя, но и от природы реагента 2) энергия переходного состояния определяет путь взаимодействия реагента [c.506]

    При удлинении боковой цепи в нафталиновом кольце склонность углеводородов нафталинового ряда к образованию кристаллических комплексов с пикриновой кислотой уменьшается. Так, не удалось получить пикраты а- и р-н-амилнафталинов [67], так же как и попытки получить кристаллические пикраты из высокомолекулярных углеводородов ряда нафталина, выделенных из радченковской нефти 1681. Неспособность этих углеводородов к образованию никратов объясняется, несомненно, особенностями их строения, прежде всего количеством, природой и положением заместителей в конденсированном ароматическом ядре. Насколько можно судить по составу и свойствам этих углеводородов, нафталиновые кольца в их молекулах имеют по нескольку заместителей различной степени сложности. Чем больше число заместителей в конденсированном ароматическом ядре и чем разветвленнее их строение, тем больше пространственные затруднения, которые создаются для реакции комплексообразования углеводородов с пикриновой кислотой. [c.260]

    Тенфу [155], подтвердив методом рентгеноструктурного анализа сложность строения молекул асфальтенов, показал, что в ас-социироваином состоянии их пространственная структура напоминает структуру кристаллитов углерода, по в отличие от иих, ассоциаты, имеют слабые энергпи связи тина Ван-дер-Ваальса. По его мнению, 5—6 молекул асфальтенов могут образовывать пачку со следующими размерами диаметр ассоциата La = S,5—15 А, толщина L =16—20 А. Базисные плоскости асфальтенов, образованные конденсированными ароматическими ядрами, распо.поже-ны беспорядочно, на расстоянии d = 3,55—3,70 А друг от друга. [c.30]


    Конфигурация в данном случае была определена на основании того факта, что один из изомеров — а именно цис-шо-мер, легче дает с гидразином циклический продукт — дифе-нилпиридазин III. Определенные выводы можно сделать и на основании различной окраски обоих изомеров транс-форма интенсивно-желтого цвета, в то время как г ис-форма бесцветна. Объясняется это тем, что молекула гранс-формы плоская, с ненарушенным сопряжением между карбонильными группами, этиленовой связью и ароматическими ядрами рассредоточение подвижных п-электронов по. сопряженной системе уменьшает энергию их возбуждения, что и приводит к появлению поглощения в видимой области спектра. В цис-форме фенильные ядра не могут расположиться в одной плоскости из-за пространственных препятствий. Неплоское строение вызывает частичное нарушение сопряжения, в результате этого поглощение сдвигается в ультрафиолетовую область спектра и видимая окраска исчезает. [c.177]

    Методом циклизации определили конфигурации л-диастереомерных непредельных дикетонов — 1,2-дибензоилэтиленов. Известны два изомерных соединения такой структуры одно из них плавится при 111 °С, другое — при 134 °С. Изомер, плавящийся при 134 °С, образует при реакции с гидразином циклический продукт — 3,6-дифенилпиридазин (7), что свидетельствует о его <ыс-конфигурации [формула (6) ]. Изомер, плавящийся при 111 °С, имеет транс-конфигурацию [формула (8)]. Вывод о конфигурации можно сделать и на основании различной окраски обоих изомеров транс-изомер (8) окращен в интенсивно-желтый цвет, в то время как ц с-форма (6) бесцветна. Объясняется это тем, что молекула трансформы плоская, с ненарушенным сопряжением между карбонильными группами, двойной углерод-углеродной связью и ароматическими ядрами рассредоточение подвижных л-электронов по сопряженной системе уменьшает энергию их возбуждения, что и приводит к появлению поглощения в видимой области спектра. В (ис-форме фенильные ядра не могут расположиться в одной плоскости из-за пространственных препятствий. Неплоское строение вызывает частичное нарушение сопряжения, в результате этого поглощение сдвигается в ультрафиолетовую область спектра, и видимая окраска исчезает. [c.116]

    Обращает на себя внимание различие окраски этих геометрических изомеров, что объясняется особенностью пх пространственного строения. В то время как молекула транс-формы (VI) плоская, с ненаруше ным сопряжением между карбонилами, двойной связью II ароматическими ядра.ми, в г ыс-форме (V) фенильные ядра не могут быть расположены в одной плоскости из-за пространственных препятствий. Неплоское расположение вызывает частичное нарушение сопряжения. В результате этого поглощение сдвигается в коротковолновую часть спектра, и окраска исчезает. [c.199]

    Большой практический интерес представляет изучение процессов деструкции смол и асфальтенообразования из них при нагревании с учетом продолжительности термообработки, температуры, давления окружающей среды различных газов, а также выявление численных значений пороговых температур и концентраций смол в растворах, По мере перехода от смол к асфальтенам происходит повышение их плотности, изменение элементного состава. Кроме этого, плоские молекулы смол [117] превращаются в пространственные, но легко деформируемые молекулы асфальтенов [ 118]. Дальнейшие превращения приводят к образованию продуктов более глубоких форм уплотнения — карбенов и карбоидов. Асфальтены имеют высокую степень конденсированности ядер (3-4 против 2-3 у смол). Установлено, что структурные звенья смол и асфальтенов нефтяных остатков состоят из малореакционных конденсированных ароматических ядер и более реакционных цепей алифатического строения. Наряду с конденсированными ароматическими кольцами в ядре могут находиться и нафтеновые структуры [119], Одним из современных эффективных способов исследования высокомолекулярных соединений нефти является электронный парамагнитный резонанс (ЭПР), [c.114]

    Главная задача спектроскопии ЯМР — определение структуры чистых органических соединений. Метод особенно важен для изучения конфигурации основной цепи, изомерии и пространственной геометрии молекулы. Последнее из указанных применений связано с присутствием в органических молекулах магнитно-анизотропных групп, пространственное расположение которых сильно влияет на вид спектра. К таким группам относятся ароматические и трехчленные кольца, карбонильные группы, ацетиленовые инитрильные группы. Возможность сравнительно простого определения пространственного строения определила широкое применение ЯМР-спектроскопии для исследования природных соединений. ЯМР-спектроскопия неоценима при определении цис-транс-шгои жа относительно двойной связи, изомерии производных бензола, состава смеси кето-енолов и других таутомеров. Основные ограничения метода определяются сложностью интерпретации спектра при наличии большого числа магнитных ядер, а также возможностью подбора подходящего растворителя (не поглощающего в области резонанса исследуемого вещества). Первое ограничение в значительной степени преодолевается совершенствованием техники математического анализа спектров и применением специальных методов. К последним относятся двойной ядерный магнитный резонанс, изотопное замещение, использование приборов с более высокой напряженностью магнитного поля, исследование резонанса на ядрах при природном содержании и др. (гл. IV). Второе же ограничение устраняется использованием набора растворителей, в том числе изотопнозамещенных (главным образом, дейтерированных) соединений. [c.47]



Смотреть страницы где упоминается термин Строение ароматического ядра пространственное молекул: [c.110]   
История химии (1975) -- [ c.301 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические молекулы

Молекула строение

Строение ароматических молекул



© 2025 chem21.info Реклама на сайте