Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение ароматических молекул

    Изучение свойств ароматических молекул позволяет сделать вывод о том, что этот класс охватывает соединения, характеризующиеся цикличностью, планарностью и зр -гибридизацией атомов углерода (или аналогичным состоянием гетероатомов) и наличием значительной энергии делокализации. Строение ароматических молекул еще раз подтверждает мысль, что представления о строгой локализации электронов в связях, о дублете электронов как единственной форме связи, совершенно недостаточны и нуждаются в более широком рассмотрении, которое учитывало бы динамическую природу химического взаимодействия атомов, подвижность и квантовые характеристики электронного облака. [c.88]


    Ранее указывалось (стр. 321), что одной из особенностей строения ароматической молекулы является ее копланарность, а следовательно, параллельность осей тг-электронов. [c.363]

    Ранее указывалось (стр. 462), что одной из особенностей строения ароматических молекул является их копланарность, а следовательно, параллельность осей я-электронов. [c.517]

    СТРОЕНИЕ АРОМАТИЧЕСКИХ МОЛЕКУЛ [c.143]

    Совпадение результатов двух методов расчета друг с другом и с эмпирическими значениями энергий резонанса показывает, что изложенные здесь представления о строении ароматических молекул едва ли потребуют в будущем полной ревизии, хотя они и могут быть подвергнуты дальнейшим уточнениям. [c.150]

    Формулы. Для исключительно наглядного изображения строения ароматической молекулы (например, для указания положения заместителей) рекомендуется применение формулы Кекуле. Для уточнения распределения электронов иногда предпочтительно применять формулирование в виде предельных структур (1а и 16) или же в виде шестиугольников из сплошных и пунктирных линий (II), аналогичных формулам, применяемым для изображения других сопряженных систем (см. Нафталин -, Антрацен ),, Эквивалентными последним являются формулы со вписанным кругом (III), получившие в последнее время очень широкое распространение [c.312]

    Выделение ароматических углеводородов. Используя цеолиты СаА, можно разделять ароматические углеводороды и парафины нормального строения. Ароматические углеводороды, молекулы которых не могут проникнуть через окна цеолитов адсорбционной полости, остаются в фильтрате, а адсорбированная фаза содержит высококонцентрированные нормальные парафины. В тех случаях, когда окна достаточно широки для входа молекул во внутреннюю структуру, цеолиты проявляют резко выраженную избирательность по отношению к ароматическим углеводородам. Это свойство используется для промышленных и аналитических целей. [c.114]

    Исследования Н. И. Черножукова совместно с М. Ф. Садчиковой и А. 3. Биккуловым по десорбции предварительно обессеренных ароматических углеводородов из узкой их фракции, выделенной из туймазинской девонской нефти, показали справедливость указанных положений. Авторы исследовали характер и строение средней молекулы ароматических углеводородов, десорбируемых последовательно повышающимися количествами изооктана, а затем смесями последнего с бензолом (см. табл. 88). [c.238]

    Влияние строения средней молекулы ароматических [c.238]

    Как было сказано выше, одним из основных связующих веществ при производстве углеграфитовых материалов является каменноугольный пек. Основные свойства пека определяются характеристикой каменноугольной смолы и условиями получения из нее пека. Пек является сложной смесью различных углеводородов. Эти углеводороды, будучи различными по строению, величине молекул, почти все относятся к ароматическим соединениям с конденсированными ядрами и довольно частым включением гетероатомов. Гетероциклические соединения содержат серу, азот и кислород. [c.13]


    Непосредственное присоединение водорода к углеводородным молекулам исходного сырья может происходить только при наличии в них двойных и тройных связей. При этом наиболее легко насыщаются ацетиленовые углеводороды, затем идут диены, а за ними олефины алифатического и циклического строения. Ароматические углеводороды требуют для своего гидрирования более высоких парциальных давлений водорода. [c.67]

    Нефтяные масла рассматриваются в виде дисперсных систем. При этом установлено, что в зависимости от способа получения и соответственно вязкости масел, дистиллятных, остаточных, компаундированных в них образуются структурные элементы различного строения [ 10]. Наличием межмолекулярных взаимодействий между компонентами смесей парафино-нафтеновых и тяжелых ароматических углеводородов объясняется неподчинением правилу аддитивности таких их свойств, как диэлектрическая проницаемость и экстинкция. В некоторых работах [И] показано, что бензольное кольцо является специфическим центром межмолекулярных взаимодействий за счет чего ароматические углеводороды в растворах образуют ассоциаты, состав и устойчивость которых зависит от химического строения взаимодействующих молекул. В маслах и топливах обнаружены явления самоассоциации ароматических углеводородов и ассоциации их с присадками [ 12]. [c.35]

    ПРОСТРАНСТВЕННЫЕ ЗАТРУДНЕНИЯ СТАТИЧЕСКИЕ (стерические препятствия)— затруднения, или препятствия, для. такого размещения атомов в молекуле, при котором сохранялись бы нормальные валентные углы и межатомные расстояния, н частности для ароматических н сопряженных систем — планарное строение молекулы. П. з. с. возникают при отталкивании химически не связанных, но близко расположенных в пространстве атомов, расстояние между которыми ограничивается суммой их ковалентных радиусов. В таком случае П. 3. с. приводят к изменению нормальных валентных углов, к нарушению планарного строения ароматических и сопряженных систем, что можно наблюдать, например, по изменению окраски, отклонению дипольного момента и другим свойствам от рассчитанного значения. Молекулы, не имеющие П. з. с., могут проявлять их по отношению к другим молекулам, с которыми они реагируют, если возле реакционного центра молекулы близко расположены большие заместители, препятствующие доступу реагента к этому центру (П. з. динамические). При этом происходит снижение реакционной способности соединений без электронного влияния заместителей. П. 3. с. можно предвидеть заранее изучением моделей исследуемых молекул или построением их масштабных графических формул с учетом ковалентных радиусов близко расположенных атомов, [c.205]

    Одним из важных результатов квантовой теории химической связи является объяснение пространственного строения органических молекул. Известно, что расположение валентности углерода в различных рядах соединений различно. Так, в насыщенных углеводородах (и их производных) валентности углерода направлены к вершинам тетраэдра. В этиленовом ряду и в ароматических соединениях наблюдается не тетраэдрическое, а тригональное направление валентности. Три одинарные связи углерода расположены в одной плоскости под углом 120° друг к другу, поэтому молекулы бензола, нафталина и других ароматических соединений являются плоскими. Молекула ацетилена линейна. [c.479]

    Дальнейшее развитие этих представлений привело к необходимости учета соответствия между строением реагирующих молекул и катализатора. А. А. Баландиным была выдвинута теория, по которой молекулы адсорбируются одновременно на двух или нескольких активных центрах. Если между расположением этих центров на определенном небольшом участке поверхности катализатора (мультиплете) и строением реагирующей молекулы существует геометрическое соответствие, то должен наблюдаться каталитический эффект. Например, дегидратация ароматических соединений, содержащих шестичленные кольца, происходит на металлических катализаторах, имеющих гексагональную решетку. При этом важно, что расстояния между атомами углерода в шестичленном кольце близки [c.530]

    Соединения типа л-комплексов могут также образовываться при участии ароматических молекул, не имеющих циклического строения. Так, например, молекула бутадиена Н2С = СН—СН=СНа образует устойчивое соединение с молекулой карбонила железа, структура которого показана на рис. 21.17, в. [c.261]

    Таким образом, ароматический характер бензола выражается в том, что это соединение по составу является непредельным, однако в целом ряде химических реакций проявляет себя как предельное соединение для него характерна химическая устойчивость, трудность реакций присоединения. В особых условиях (катализаторы, облучение) бензол ведет себя так, как будто в его молекуле имеются три двойные связи. Причина своеобразия свойств бензола кроется в химическом строении его молекулы. [c.425]


    Цвет повышается и в том случае, когда пространственные помехи возникают в цепи сопряжения красителя и вызывают поворот целого ароматического ядра относительно другой части молекулы. Так, бесцветность бензофенона можно объяснить нарушением плоскостного строения частей молекулы вследствие поворота отдельных ее частей, в то время как флуоренон, в котором вращение исключено, имеет оранжевую окраску  [c.265]

    Величина анилиновой точки различных углеводородов зависит от строения их молекул. Для разных гомологических рядов и углеводородов различных молекулярных масс в одном гомологическом ряду АТ имеют разное значение. По мере увеличения молекулярной массы углеводородов одного гомологического ряда их анилиновая точка возрастает. Самые низкие анилиновые точки имеют ароматические углеводороды, несколько большие — циклоалканы и самые высокие — алканы. Например, для углеводородов с одинаковым числом атомов углерода (Се) АТ равна для бензола — около 30° С, для циклогексана—ЗГ С и для гексана — 69,1° С. [c.116]

    Простота строения цепочечных молекул позволяет изучать на примере н-парафинов закономерности полиморфизма и изоморфизма молекулярных кристаллов. Н-парафины обнаруживают большое разнообразие полиморфных модификаций. Достоверно установлены в настоящее время триклинная, моноклинная, ромбическая и гексагональная модификации парафинов, причем лишь первые три из них могут существовать в кристаллическом состоянии, а гексагональная фаза является ротационно-кристаллической. Считается [57], что анализ упаковки молекул может способствовать пониманию причин, делающих одну модификацию более устойчивой по сравнению с другой. Это следует, например, из анализа упаковки ароматических молекул [98]. Хотя плотность упаковки молекул и симметрия молекулы являются двумя важнейшими факторами, определяющими, как правило, структуру любого органического кристалла, органическая кристаллохимия длинноцепочечных молекул имеет свою специфику [60]. В случае н-парафинов различия в плотности упаковки четных и нечетных молекул, имеющих разную симметрию, перестают быть ощутимыми с увеличением длины их углеводородных цепочек. Поэтому наибольшее [c.8]

    С изменением строения растворяемых молекул избирательность растворителя будет меняться. Так, например, избирательность одного и того же растворителя будет совершенно различна при извлечении из нефтяных фракций ароматических углеводородов и при извлечении карбоновых кислот из их смеси с углеводородами Если в первом случае основной причиной избирательного растворения является различная поляризуемость молекул углеводородов [6], то во втором случае — различие значений ди-польных моментов, осложненное образованием водородных связей. [c.253]

    Только в 1953 г. для рассмотрения влияния строения ароматических молекул на скорости их радикального замещения было применено уравнение Хаммета. Это сделали голандские химики Е. Коймен, Р. ван Хельден и [c.83]

    Фотовозбуждение л -> п -характера оказывает меньшее влияние на электронное строение ароматической молекулы, так как электрон переводится с делокализованной связывающей я-орбитали на делокализованную несвязывающую я -орбиталь. Однако Рид [530] отмечал, что фотовозбуждение дает значительный эффект, редко достигаемый термическим путем и состоящий в том, что не только легкость протекания реакции, но и путь реакции часто меняется при облучении (уже указывалось выше для кон-.стант кислотности возбужденных частиц). Так, например, хорошо известно, что направление реакции замещения, скажем толуола, можно связать с различным распределением электронов в орто-, мета- и /гара-положениях. Возбуждение меняет это распределение электронов, так что, если мы проводим реакцию в условиях интенсивного облучения, мы должны ожидать изменения отношения орто-, мета- и пара-продуктов. Стационарная концентрация возбужденных молекул может составлять лишь малую долю от общей концентрации, но их большая реакционная способность должна усиливать этот зффе1 т . [c.448]

    Из топлив, применяемых в авиационных двигателях, наибольшую детонацию вызывают топлива, состоящие в основном из метановых углеводородов нормального строения, и наименьшую топлива, содержащие метановые углеводороды с сильно разветвленными молекулами и ароматические углеводороды. Детонационная стойкость олефиновых углеводородов также зависит от строения их молекул, однако она ниже, чем у метановых углеводородов с сильно разветвленными молекулами. Поэтому, чтобы избежать детонации, необходи.м правильный подбор топлива по углеводородному составу. [c.173]

    Однако результаты исследований (см. табл. 82) показывают, что эффективность деактиваторов зависит и от строения ароматического амина [99]. Деактивирующие свойства возрастают при введении в молекулу амина оксигруппы и зависят от взаимного расположения окси- и аминной групп, увеличиваясь от мета- к пара- и орто-положению. В отличие от антиокислителей наиболее эффективными деактиваторами металла являются соединения с заместителями не в пара-а в орто-положении. [c.260]

    Исключительно стабильны против действия кислорода воздуха голоядерные ароматические углеводороды бензол, нафталин, антрацен, фенантрен, дифенил и др. Они очень мало изменяются даже при высоких температурах и давлениях. Ароматические углеводороды с алифатическими цепями и полициклические ароматические углеводороды по стабильности, несколько уступают моно -и бициклическим. С увеличением числа и длины боковых цепей стабильность ароматических углеводородов падает. Наличие третичного углеродного атома, несимметричность строения, усложненность молекулы также снижают иу стойкость к окислению. Наф-тено-ароматические углеводоролдл одинакового строения с аро- [c.14]

    А содержат димерные углеводородные автоассоциаты, стойкость, которых повышается с повышением сродства к электрону акцептора (ангидрида), в поле влияния которого они находятся. Стойкость этих димеров коррелирует как со строением углеводородной молекулы, так и со свойствами растворителя. Для молекул-до-норов, где второй заместитель отсутствует или максимально удален от первого, стойкость коррелирует с такой характеристикой среды, как диэлектрическая постоянная, а у неплоских молекул — с вязкостью, температурой плавления и показателем преломления. Чувствительность димеров к влиянию среды зависит от типа симметрии молекулы исходного углеводорода. Ранее было сделано предположение о параллельном расположении углеводородных молекул, образуюш,их димер [2]. Есть основания предполагать, что в среде УА взаимное расположение нафталиновых молекул соответствует таковому в кристаллах исходных соединений. На примере систем, исследованных в Д, показано различие активности мономерных молекул нафталиновых углеводородов и соответствующих димеров, существующих в поле влияния ПДА [2]. 05 этом же говорит и различие способности их КПЗ к взаимному наложению синглет-триплетной полосы компонентов на синглет-синглетную полосу КПЗ. Большая стойкость КПЗ с димерами, чен с мономерными молекулами, соответствует известному эмпирическому правилу о повышении прочности при увеличении молекулярного веса одного из компонентов. Механизм взаимодействия между углеводородными молекулами в димере не ясен. Известно мнение, что ароматические углеводороды способны выступать как в роли доноров, так и в роли акцепторов л-электронов [22], Явление образования ароматическими л-донорами димеров вереде органических растворителей в поле влияния ПДА было обнаружено [c.136]

    При разделении смеси углеводородов и сернистых соединений можно сначала подвергать смесь окислению [96), а затем хроматографическому разделению. Как правило, сернистые соединения окисляются легче углеводородов, поэтому при правильном выборе условий процесса можно провести окисление с достаточной степенью избирательности, т. е. осуществить окисление атома серы с переводом сульфидов в сульфоксиды (илп сульфоны), по возможности, не задевая углеводородной части. Сернистые соединения, содержащие в молекуле сульфоновую или сульфоксидную группу, уже сравнительно легко можно отделить от углеводородов методом хроматографии. Наиболее трудно отделить сернистые соединения тиофенового тппа от близких к ним по строению ароматических углеводородов, так как даже но склонности к окислендю эти две группы соединений очень мало различаются между собой поэтому проведение избирательного окисления тиофеновых соединений в смеси с ароматическими углеводородами оказывается весьма трудной задачей. [c.363]

    Нефти и высококипящие нефтепродукты обладают замечательным свойством светиться под действием ультрафиолетовых лучей. На нснользовании этой особенности нефтей основаны методы люминесцентного анализа для нознания химической природы сложных молекул, входящих в состав нефтей и вызывающих люминесцентное свечение. Фотолюминесценция или излучение, возникающее при возбуждении светом, как правило, наблюдается у молекул довольно сложного химического состава и строения. Существует, следовательно определенная связь между строением вещества и склонностью его к люминесценции. Поэтому исследование спектра люминесценции нефтепродуктов может дать весьма ценные сведения для суждения о строении ароматических структурных звеньев сложных молекул, входящих в состав высококипящих нефтяных фракций. [c.482]

    Строение молекул углеводородов значительно влияет на величину КТР [6]. Так, например, КТР ароматических углеводородов в таком растворителе второй группы, как анилин, зависит от числа колец в этих углеводородах и длины алкильных цепей. С увеличением числа колец в углеводородах их анилиновая точка (КТР в анилине) резко снижается. С увеличением длины алкильных цепей анилиновая точка повышается. Зависимость анилиновой точки от процента углеродных атомов в кольцах молекул нафтеновых углеводородов прямолинейна. Производные пятичленных нафтенов интенсивнее снижают анилиновую тонку с увеличением числа колец в молекуле, чем шестичленные. При одинаковом строении ароматических и нафтеновых углеводородов анилиновая точка последних значительно выше. Нефтено-ароматические углеводороды имеют более низкую анилиновую точку, чем соответствующие им по строению нафтеновые углеводороды. [c.161]

    Образование комплексного соединения ароматических углево- -дородов с ионами, находящимися на поверхности адсорбента, так же как и при их растворении в избирательном растворителе, связано с возникновением в электронейтральной молекуле-под влиянием электростатического поля адсорбента дипольного момента. Адсорбируемость так же зависит от строения ароматических углеводородов, как и растворимость. Поэтому, чем меньше экраниро-. ваны ароматические ядра нафтеновыми кольцами или боковыми парафиновыми цепями, тем легче в них возникает индуцированный дипольный момент и тем эффективней адсорбция таких углеводородов полярными адсорбентами. Чем больше колец в молекуле ароматических углеводородов, тем прочней они адсорбиру- -ются. Парафиновые и нафтеновые углеводороды слабо адсорбируются полярными адсорбентами. [c.237]

    Смешанные парафнно-ароматические углеводороды, вероятно, состоят из длинных парафиновых цепей с фенильными заместителями в конце цепи. Число ароматических колец в этих структурах не превышает двух. Подобные углеводороды как с циклопарафиновыми, так и фенильными заместителями могут входить в состав твердых парафинов и церезинов. В чистом виде они пока не выделены. Третий тип углеводородов смешанного строения, в молекулах которых имеются все структурные элементы — ароматические, циклопарафнновые и парафиновые, — наиболее распространен среди углеводородов высокомолекулярной части нефти. [c.32]

    Таким образом, установлены различия в составе и строении средней молекулы разных остатков. Последние различаются по ароматичности и реакционной способности, каадый вид остатков имеет свою узкую область изменения этих показателей. На рис.1 показано влияние ароматичности на величину ЮТ гудронов,крекинг-остатков и их смесей, получешшх из малосернистых и сернистых нефтей. Для каждого вида остатков характерно снижение КРС с увеличением доли углерода в ароматических кольцах. [c.29]

    На основаиии элементарного состава, свойств и некоторых реакций асфальтенов химическое строение их молекул рассматривают как поли-циклическую ароматическую, сильно конденсированную систему с короткими алифатическими цепями в качестве заместителей ароматического ядра. Среди циклических структурных Э1[ементов молекулы наряду с карбоциклами ирисутствуют часто также пяти- п шестичленные гетероциклы. [c.363]

    Асфальтены обладают значительной сорбционной способностью не только к ароматическим углеводородам, но и к гетероциклическим соеди-нениям[79]. Это можно объяснить тем, что наблюдается строение молекул ориентироваться таким образом, чтобы во взаимный контакт с другими молекулами вступало наибольп1ее число атомов[76], поэтому взаимодействующие ароматические молекулы ориентируются в параллельных плоскостях. [c.28]

    Дальнейшее развитие этих представлений привело к необходимости учета соответствия между строением реагирующих молекул и катализатора. А. А. Баландиным была выдвинута теория, по которой молекулы адсорбируются одновременно на двух или нескольких активных центрах. Если между расположением этих центров на определенном небольшом участке поверхности катализатора (мультиплете) и строением реагирующей молекулы существует геометрическое соответствие, то должен наблюдаться каталитический эффект. Например, дегидрогенизация ароматических соединений, содержащих шестичлениые кольца, происходит на металлических катализаторах, имеющих гексагональную решетку. При этом важно, что расстояния между атомами углерода в шестичленном кольце близки к межатомным расстояниям в решетке металла. Необходимость такого геометрического соответствия является одной из причин, обусловливающих специфичность действия катализаторов. [c.412]

    Наличие конкретной функциональной группы в составе органических молекул является причиной обшности их свойств, и на этом основана их классификация внутри каждого из рядов. Необходимо отметить, что существенную роль в проявлении конкретной функции играет строение скелета молекулы. Например, гидроксигруппа может быть связана как с алифатическим, так и с ароматическим углеводородным радикалом. В первом случае соединение будет относиться к классу спиртов, во втором — к классу фенолов  [c.274]

    Наиболее важен для органической химии циклический углеводород бензол (СбНб). Строение его молекулы отвечает плоскому равностороннему шестиугольнику [ (СС)= 140, d( H)= 108 пм], причем между атомами углерода осуществляется весьма прочная ароматическая связь, природа которой пока не вполне ясна. [c.315]

    Ароматические кетоны также часто дают плохие результаты, поскольку электронное строение их молекул способствует скорее образованию комплекса типа I. ОднЕко ароматические спирты могут восстанавливатьси по методу Клемменсена, следовательно, оии могут быть [c.154]

    Классич. теория хим. строения и первонач. электронные представления оказались не в состоянии удовлетворительно описать на языке структурных ф-л строение мн. соед., напр, ароматических. Совр. теория связи в орг. соед. основана гл. обр. на понятии орбиталей и использует молекулярных орбиталей методы. Интенсивно развиваются квантовохим. методы, объективность к-рых определяется тем, что в их основе лежит аппарат квантовой механики, единственно пригодный для изучения явлений микромира. Методы мол. орбиталей в О. х. развивались от тостого метода Хюккеля к валентных связей методу, ЛКЛО-приближению и др. Широко используются представления о гибридизации атомных орбиталей. Этап проникновения орбитальных концепций в О.х. открыла резонанса теория Л. Полинга (1931-33) и далее работы К. Фукуи, Вудворда и Р. Хофмана о роли граничных орбиталей в определении направления хим. р-щга. Теория резонанса до сих пор широко используется в О. X, как метод описания строения одной молекулы набором канонич. структур с одинаковым положением ядер, но с разньтм распределением электронов. [c.398]

    Пачечно-бахромчатая (мицеллярно-бахромчатая или кристаллитная) модель строения углерода была постулирована в начале 50-х годов независимо друг от друга Франклин и Касаточкиным. Она получила значительное развитие во многих работах. В рамках данной теории интерпретировались практически все результаты исследований была предложена методика экспериментального определения доли ароматического углерода , было разработано множество моделей беспорядка или частичной аморфности полимерного углерода . Считали, что аморфность обусловлена, главным образом, беспорядочными трансляциями, поворотами и изгибами слоев , нетождествеиностью валентных связей отдельных атомов (хиноидная структура Полинга ) или состояний разных поверхностей одной и той же или разных двумерных ароматических молекул , а также двухфазностью системы. Предполагалось", что аморфный углерод характеризуется всевозможными степенями гибридизации внешних электронов. Хотя и акцентировалось внимание на более или менее регулярной упаковке ароматических слоев в пачке (кристаллите), но тем не менее наряду с атомными слоями допускалось существование и цепочечных фрагментов, упакованных нерегулярным образом. Казалось, что не существует другой возможности для интерпретации многочисленных фактов, особенно данных рентгеновской дифракции. [c.20]


Смотреть страницы где упоминается термин Строение ароматических молекул: [c.76]    [c.372]    [c.512]    [c.71]    [c.115]    [c.976]   
Смотреть главы в:

Природа химической связи -> Строение ароматических молекул




ПОИСК





Смотрите так же термины и статьи:

Ароматические молекулы

Ароматические соединения, строение молекулы

Козлов. О зависимости физико-химических свойств органических соеди- i нений от строения их молекул. VII. Температуры кипения ароматических аминов

Молекула строение

Строение ароматического ядра пространственное молекул



© 2025 chem21.info Реклама на сайте