Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пластификация внешняя

    Существенное значение для процессов переработки ПМ имеет также пластификация полимеров. Под пластификацией понимают повышение пластичности полимеров при их переработке и эластичности при эксплуатации. Сущность пластификации состоит в снижении температуры стеклования полимера и расширении интервала АТ = Тт - Тс. Пластификация полимеров может быть достигнута различными методами, в связи с чем различают внутреннюю и внешнюю пластификацию. [c.379]


    Пластификацию можно осуществлять двумя принципиально различными путями введением в полимер веществ, уменьшающих взаимодействие между макромолекулами, или изменением строения самих макромолекул за счет включения в них более гибких звеньев. В соответствии с этим различают два вида пластификации внешнюю и внутреннюю [1]. Пластификацию полимеров за счет введения низкомолекулярных веществ, уменьшающих межмо-лекулярное взаимодействие, называют внешней. Пластификацию путем включения в состав полимера звеньев, увеличивающих гибкость цепи, называют внутренней. Такая классификация имеет, однако, существенные недостатки. Действительно, для того, чтобы изменить структуру полимерной цепи, в частности, для того, чтобы ввести в цепь звенья иного строения, необходимо синтезировать новый полимер, либо провести определенную химическую реакцию [c.5]

    Внутренняя пластификация имеет место тогда, когда ослабление межмолекулярных связей между цепями полимера является следствием изменения структуры самой цепи в результате какой-либо химической реакции. Так, например, температура стеклования, равная для полистирола 80 °С, уменьшается для сополимеров стирола с бутадиеном до —30 --65 °С, в зависимости от содержания звеньев бутадиена в сополимере. Внутренняя пластификация менее технологична, чем внешняя, однако в специальных случаях она оправдана. [c.39]

    Жесткую цепь можно сделать более гибкой, а продукт соответственно более эластичным, уменьшив энергию межмолекулярного взаимодействия. Такое изменение гибкости полимерной цепи лежит в основе важного производственного процесса — пластификации. Различают внешнюю и внутреннюю пластификацию. Внешняя пластификация заключается в добавлении к чистому полимеру небольших количеств растворителя, родственного по химическому составу данному полимеру. Полимер поглощает низкомолекулярную жидкость ее молекулы, притягиваясь своими полярными группами к полярным группам полимера, ослабляют действие сил молекулярного сцепления и увеличивают гибкость цепей. Одна молекула жидкости способна блокировать одну полярную группу в молекуле полимера. Пластифицируются и неполярные углеводородные полимеры. В этом случае пластификация обусловливается раздвижением цепей и уменьшением вязкости системы. [c.208]

    Различают пластификацию внешнюю и внутреннюю. Сущность внешней пластификации заключается в том, что при диффузии молекул пластификатора в полимер силы межмолекулярного взаимодействия меледу цепями уменьшаются и частично заменяются взаимодействием звеньев макромолекул с молекулами пластификатора. Молекулы пластификатора раздвигают полимерные цепи и окружают их, создавая промежуточный слой. Появление промежуточного слоя в полимере облегчает перемещение цепей, в результате чего всегда снижается температура стеклования и увеличивается пластичность (текучесть) полимера, что облегчает его переработку (рис. П. 16). [c.37]


    Внешняя пластификация может быть физической и механической. При физической пластификации в полимер вводятся пластификаторы — низкомолекулярные твердые или жидкие органические соединения с высокой температурой кипения и низким давлением пара. Пластификаторы экранируют и сольватируют функциональные группы в звеньях полимера и снижают потенциальный барьер внутреннего вращения макромолекул, что приводит к увеличению гибкости цепей и снижению температуры стеклования. Понижение температуры стеклования пропорционально количеству молей пластификатора, удерживаемых полимером  [c.379]

    Физико-химические воздействия (газообразного или жидкого) химического агента на полимер включают адсорбцию и абсорбцию агента, набухание и (или) пластификацию матрицы, уменьшение поверхностной энергии и (или) такие химические реакции, как гидролитическая деполимеризация. Эти особенности образования трещин в условиях воздействия внешнего напряжения были рассмотрены в многочисленных статьях и некоторых обзорах (например, [76, 77, 80, 171]). Из-за чрезвычайно большого объема экспериментальных данных рассмотрим лишь некоторые из них. [c.386]

    Линейные гибкие макромолекулы. Способность молекулярных цепей изменять свою конфигурацию в зависимости от внешних условий, т. е. гибкость или жесткость этих цепей, является кардинальной характеристикой макромолекул, определяющей свойства полимерных систем. Различие в поведении гибких и жестких частиц проявляется, как указывалось, в электрохимических свойствах (глава пятая), в термодинамических свойствах растворов полимеров (глава восьмая), в молекулярно-кинетических свойствах коллоидных систем (главы вторая и восьмая), в свойствах гелей (глава девятая) и др. Это различие связано и с основными характеристиками структуры и физикомеханическими свойствами полимерных материалов. Как уже указывалось, гибкость и жесткость макромолекул являются относительными характеристиками, зависящими от ряда внешних условий, прежде всего, от температуры однако, применительно к обычному интервалу средних температур, полимеры с гибкими и жесткими макромолекулами достаточно отчетливо различаются между собой влияние других факторов (пластификации, скорости деформации) описано ниже (стр. 242—251). [c.227]

    К внешней пластификации относится и случай так называемой структурной пластификации, когда эффект пластификации достигается введением в полимер очень небольших количеств (до 1%) пластификатора. Ясно, что при таком количестве пластификатор не может равномерно распределяться в объеме полимера. В этом случае его молекулы располагаются на границах раздела между элементами надмолекулярных структур полимера, что вызывает изменение физических и физико-механических свойств полимера аналогично тому, как это происходит при обычной пластификации. [c.39]

    Метод пластификации дисперсий внешними пластификаторами имеет ряд недостатков, включающих возможность миграции пластификатора из полимера, его улетучивание, повышенную токсичность большинства пластификаторов. Всех указанных недостатков лишен другой способ пластификации ПВА — сополимеризация ВА с мономерами, придающими повышенную эластичность сополимеру. Наиболее широко в качестве сомономеров длй получения сополимерных дисперсий на основе ВА используются эфи-ры-малеиновой и акриловой кислот и этилен. [c.56]

    Поскольку всякое структурное превращение обусловлено изменениями во взаимном расположении структурных элементов того или иного типа (перегруппировкой, распадом, агрегацией), то полимеры в А. с. обнаруживают сложный комплекс релаксационных явлений, обусловленных не только изменениями в расположении длинных гибких макромолекул, как это предполагалось ранее, но и всеми другими процессами изменения упорядоченности. При этом следует подчеркнуть, что вследствие больших размеров элементов надмолекулярной структуры и высокой вязкости аморфных полимерных тел (за исключением их р-ров низкой концентрации) все структурные превращения полимеров в А. с. при не очень высоких темп-рах происходят чрезвычайно медленно и иногда трудно регистрируемы. Однако эти процессы м. б. ускорены нагреванием, пластификацией, а также действием внешних механич. сил. Напр., вынужденная высокоэластич. деформация, развивающаяся под действием достаточно больших одноосно растягивающих напряжений, превращает исходное изотропное аморфное полимерное тело в одноосно ориентированное анизотропное аморфное тело. Т. обр., происходит ярко выраженное структурное превращение аморфного полимерного тела, состоящее как в изменении расположений [c.61]

    В технологии пластических масс, лакокрасочных материалов и др. продуктов на основе высокомолекулярных веществ для снижения К. часто прибегают к пластификации полимеров. Наиболее распространена пластификация путем введения в систему низкомолекулярных пластификаторов ( внешняя пластификация). [c.522]


    Если ослабить взаимодействие между соседними цепями полимера, то переход в стеклообразное состояние будет происходить при более низкой температуре и, следовательно, снизится температура стеклования. Это достигается пластификацией внутренней и внешней. [c.57]

    Чаще всего под термином пластификация понимают внешнюю пластификацию, которая заключается в воздействии на полимер жидких высококипящих или твердых веществ, называемых [c.23]

    В работе [87] показано, что полное слияние латексных частиц с образованием однородных пленок не всегда приводит к повышению когезионной прочности. Это связано с тем, что наличие неоднородностей, обусловленных неполной коалесценцией или другими причинами, способствует перегруппировке кинетических элементов под действием силовых полей, рассасыванию перенапряжений и, следовательно, повышению долговечности адгезионных соединений. Однако недостаточная однородность пленки, полученной из латекса, может быть и причиной ее разрушения, если латексные частицы в пленке связаны друг с другом преимущественно вследствие сегментальной локальной диффузии и пластификации эмульгатором и водой, а температура формирования пленки выше температуры релаксационного перехода в стеклообразное состояние, но ниже температуры стеклования полимера [88]. Предполагается, что под действием внешних сил пленка латекса растягивается за счет различной деформации глобул [89]. [c.77]

    Как уже указывалось, гибкость и жесткость макромолекул являются относительными характеристиками, зависящими от ряда внешних условий, прежде всего, от температуры однако применительно к обычному интервалу средних температур полимеры с гибкими и жесткими макромолекулами достаточно отчетливо различаются между собой. Влияние других факторов (пластификации, скорости деформации) описано ниже. [c.202]

    Сравнение внутренней пластификации сложными виниловыми эфирами с внешней пластификацией ПВХ различными сложными эфирами позволяет сделать вывод, что при равных мольных долях мономера и пластификатора в первом случае в большей степени изменяется Т , а во втором — Т . Большое влияние звеньев второго мономера на можно объяснить уменьшением регулярности строения ПВХ и ослаблением межмолекулярного взаимодействия, что облегчает перемещение макромолекул друг относительно друга. Снижение степени регулярности полимера имеет место при сополимеризации винилхлорида с любым мономером. Даже мономеры с громоздкими заместителями, сильно ограничивающими подвижность макромолекулы, в большей или меньшей степени снижают сопо- [c.270]

    Под пластификацией в физике и химии высокомолекулярных соединений и технологии переработки пластмасс обычно понимают введение веществ (пластификаторов) в полимерную композицию, придающих изделиям из полимеров пластичность и (или) эластичность (см. с. 50). Такую пластификацию условно можно назвать внешней пластификацией. [c.166]

    Внутренняя пластификация выгодно отличается от внешней. Это отличие заключается в том, что обычные пластификаторы за большее или меньшее время все же улетучиваются, материал постепенно теряет эластичность, морозостойкость, при внутренней же пластификации свойства материала остаются постоянными, так как пластифицирующее действие оказывают элементы структуры самих макромолекул. [c.58]

    Различают внешнюю и внутреннюю пластификацию внешняя заключается в добавлении к чистому полимеру небольших количеств растворителя, родственного по химическому составу данному полимеру. Полимер поглощает низкомолекулярную жидкость ее молекулы, притягиваясь своими полярными группами к полярным группам полимера, ослабляют действие сил молекулярного сцепления и увеличивают гибкость цепей. Пластифицируются и неполярные углеводородные полимеры, при этом пластификация обусловливается раздвижением цепей и злменьшением вязкости системы. [c.73]

    Нам известно, что материал, обладающий локализованной сегментальной подвижностью и не обладающий молекулярной подвижностью, должен быть аморфным и находиться в каучуковом состоянии. Молекулярная инженерия поможет нам сконструировать аморфный полимер, но как нам перевести его в каучуковое состояние Для того чтобы полимер находился в каучуковом состоянии, необходимо, чтобы его температура стеклования Т, была намного ниже, а температура текучести — намного выше температуры испытаний. Для максимального расширения температурного интервала, в котором полимер ведет себя как каучук, необходимо понизить и повысить Гх настолько, насколько это возможно. Этим вопросом и занимается каучуковая технология. Так, Т, полимера можно понизить в процессе его внутренней или внешней пластификации. Известно, что полимера снижается при сополимеризации с небольшими количествами определенного сомономера, т.е. в процессе внутренней пластификации. Внешняя пластификация включает в себя введение в полимер пластификатора — высококипящей совместимой с полимером жидкости. Пластификатор уменьшает межцепную когезию в полимере и облегчает его сегментальную подвижность. Также каучук может быть пластифицирован при его перетирании и дроблении, что приводит к уменьшению молекулярной массы и, следовательно, Т,- Повышение Т . обеспечивается сшиванием или вулканизацией полимера. В спштом или вулканизованном материале настолько высока, что при нагревании материал начинает химически разлагаться при температурах ниже Tj. Таким образом, каучуковая технология представляет собой комбинацию процессов пластификации и сшивания. [c.333]

    При внесении в шихту для коксования оптимальных по качеству добавок органических веществ, обычно пеков или масел (при соответствующем их расходе), можно повысить спекаемость углей и шихт. Механизм действия органических добавок может быть в общем представлен в следующем виде. При нагреве углема-слявой смеси до температур, при которых еше не начинается термическое разложение угля, добавки распределяются по поверхности угольных зерен и частично адсорбируются ими. В период пластического состояния молекулы добавки проникают в межмолекулярное пространство изменяющегося вещества угля и способствуют повышению макромолекулярной подвижности по механизму внешней пластификации. Молекулы жидкой добавки раздвигают молекулы образовавшихся продуктов расщепления угля и затрудняют их взаимодействие в процессе поликон-денсации. Одновременно добавки участвуют в реакциях водородного перераспределения, в результате которого перенос водорода добавок к реагирующим молекулам (радикалам) угля приводит к стабилизации и, как следствие, увеличению количества веществ со средней молекулярной массой, образующих жищсую. фазу пластической массы. Кроме того, наличие вещества добавки повышает концентрацию в пластической массе жидкоподвижных продуктов. В результате возрастает количество, текучесть и термостабильность пластической массы, улучшаются условия формирования пластического контакта остаточного вещества угольных зерен и зарождения новой промежуточной фазы (мезофазы), с которой связывают развитие упорядоченной углеродистой (оптически анизотропной) структуры полукокса-кокса. [c.215]

    Большое количество исследований проведено в направлении модифицирования свойств полистирола. Существенным недостатком этого полимера является возникновение в нем больших внутренних напряжений уже в процессе изготовления изделий. В связи с низкой упругостью полистирола даже при сравнительно небольшой внешней нагрузке на изделиях из полистирола могут появиться многочисленные трещины. Простой сополимер стирола с мономером, придающим полимеру большую внутреннюю пластичность, обладает пониженной температурой стеклования (для полистирола 7 =80°). Низкая теплостойкость, свойственная полистиролу (и без внутренней пластификации), ограничивает его широкое практическое применение. Значительно большей теплостойкостью обладают блоксополимеры полистирола с сополимером стирола (40%) и бутадиена (60%) или акрилонитрила (40%) и бутадиена (60%). Блоксополимеризацию проводят методом механической деструкции смеси полистирола и указанных сополимеров. После 20-минутного перетирания этой смеси полимеров в атмосфере азота при 120—150° в закрытом смесителе образуется блоксополимер. Блоксополимер имеет значительно более высокую прочность, особенно при ударных нагрузках, чем полистирол (удельная ударная вязкость блоксополимера составляет 25—30 кг-см1см , полистирола 5—15 кг-см см ), в тоже время температура его стеклования заметно не изменяется. [c.544]

    Несмотря на то, что основным требованием к соединениям, используемым в качестве пластификатора, является их совместимость с полимером, уже давно для модификации свойств полимеров использовались вещества,- несовместимые с эфирами целлюлозы. При этом предполагалось [35], что пластификация полимеров несовместимыми с ними пластификаторами реализуется за счет увеличения рыхлости упаковки макромолекул. Позднее Козлов с сотр. [101, 102] предложил механизм, объясняющий действие плохих пластификаторов. Согласно этому механизму несовместимый пластификатор может взаимодействовать только с молекулами, находящимися на поверхности вторичных структурных образований. При этом межструктурная пластификация осуществляется без сколько-нибудь существенного изменения эластических свойств полимера. Незначительные количества пластификатора оказываются достаточными для обеспечения начального акта распада крупных надмолекулярных структур, что приводит к повышению их тепловой подвижности. Температура стеклования по-. лимера при этом не должна снижаться. По мнению Тагер и сотр. [103], подвижность формирующихся структурных образований связана не с внутренним, а с внешним трением и при межструктур-ной пластификации действуют те же законы, что и при граничной [c.153]

    При переработке полимерных расплавов предполагается, что при высокой температуре переработки не происходит их заметного разложения. Полимеры, растворы которых трудно перерабатывать из-за высокой вязкости или вследствие разложения при температуре плавления, можно перевести в вязкотекучее состояние пластификацией и перерабатывать при более низкой температуре. В качестве пластификаторов применяют высококипящие жидкости, совмещающиеся с полимерами, например эфиры фосфорной и фталевой кислот (диоктилфталат), различные алифатические дикарбоновые кислоты. Молекулы пластификатора располагаются между полимерами цепочками, что приводит к уменьшению межмолекулярно-го взаимодействия (внешняя пластификация). При этом подвижность полимерных цепочек возрастает, а температура стеклования понижается. Пластифицированные полимеры являются более гибкими и обладают меньшей твердостью по сравнению с непластифи-цированными (см. опыт 3-48). [c.104]

    Эффект внутренней пластификации можно продемонстрировать на примере получения эластичной пленки. С этой целью по 2 г каждого сополимера и соответствующего гомополимера растворяют в 30 мл тетрагидрофурана. Полученные растворы выливают на горизонтально установленные стеклянные пластинки, которые обрамлены металлическими рамками (0,5X10X10 см). Медленно испа ряют растворитель под тягой и через несколько часов пленку можно отделить от стекла. Пленки высушивают на воздухе в течение двух суток. Эластичность и жесткость пленок определяют сгибанием и разгибанием, а также процарапыванием ногтем. Для проявления эффекта внешней пластификации пленку получают из раствора 1,6 г гомополивинилхлорида и 0,4 г диоктилфталата в 30 мл [c.180]

    Для хорошего растворения таких асфальтенов мальтены должны содержать наибольшее количество веществ ароматического и гетероциклического рядов (с температурой кипения не ниже 350—400°С) и наименьшее количество углеводородов парафинонового ряда. Такие мальтены обеспечат достаточную внешнюю пластификацию асфальтенов и хорошую коллоидную стабильность битумов. Для экстремального повышения пластических свойств и долговечности битумов можно считать эффективным увеличение молекулярного веса асфальтенов до 10000 и более и придание им каучукообразных свойств посредством внутренней пластификации алкилированием, т. е. введением в молекулы асфальтенов длинноцепных алкильных радикалов. [c.5]

    Жидкое А. с. полимеров возможно только при отсутствии пространственной структуры или в случае, когда связи между макромолекулами достаточно слабы, т. е. легко нарушаются тепловым движением. Вследствие высокой вязкости полимеров и гибкост1г макромолекул жидкое А. с. полимеров также обладает особенностями. Развитие текучести, т. е. изменение формы под действием внешних сил, может происходить настолько замедленно, что при относительно небольших временах оно практически незаметно и вследствие высокоэластично-сти потока возникает комплекс свойств, соответствующий определению твердого А. с. Однако с течением времени текучесть оказывается заметной, вследствие чего в той или иной степени маскируется высокоэластич-ность и жидкое А. с. такого тола становится очевидным. Вязкость полимера очень сильно уменьшается с ростом темн-ры, а также при введении растворимых в нем низкомолекулярных веществ (см. Вязкость, Пластификация, Растворы). Поэтому длительность пребывания способного к течению полимера (или его р-ра) в твердом А. с. может варьировать от сколь угодно больших значений (напр., при темп-ре, блиакой к стеклования те.ппературе) до 1—0,1 мсек (папр., в р-рах полимеров низкой концентрации). [c.11]

    При отдаг1ке текстильных матерналоа большое значение имеет улучшение Внешнего вида изделия и изменение характера поверхности ( грифа ) путем нанесения некоторых препаратов (так называемый авиваж, пластификация). Этот процесс основан на отложении жировых веществ на поверхности волокна. Катионоактивные соединения, содержащие жировые остатки и несущие положительный заряд, особенно прочно закрепляются на отрицательно заряженном волокне. При действии некоторых веществ волокно приобретает характерную поверхность, которая распознается на ощупь при сильном сжатии ткаьч рукой ( гриф ). [c.503]

    Кроме метода внесения пластифицирующей добавки, называемого внешней пластификацией, применяется также метод внутренней пластификации. Он основан на снижении жесткости макроцепей полимера и уменьшении сил притяжения между ними путем изменения структуры макромолекул. К внутренней пластификации приводит введение в состав полимера различных групп, снижающих симметричность макромолекул, увеличивающих расстояние между полимерными цепями. Наиболее широко применяемым типом внутренней пластификации является сополимеризация мономера, соответствующего жесткому полимеру с высокой температурой размягчения, с другим мономером, дающим более эластичный полимер. Например, сополимеризацией винилхлорида с винилаце-татом получают сополимер, имеющий пониженную температуру размягчения и ббльшую эластичность по сравнению с гомополимером винилхлорида. Примером внутренней пластификации может быть также сополимеризация стирола с бутадиеном, приводящая к получению одного из видов синтетического каучука. [c.58]

    В быстроходном смесителе Драйс-флотатор фирмы Драйсверке (ФРГ) применен патент фирмы на процесс смешения, гомогенизации и пластификации пластмасс по тер МОКИ н етическому пр и н ци-пу (без внешнего подвода тепла). В смешиваемой массе создаются потоки столь высокой интенсивности, что диспергируемое твердое вещество приобретает свойство текучести. При этом вследствие сильного внутреннего трения (термокинетический принцип) происходит нагрев материала, достаточный для глубокой же-латинизации термопластической смеси синтетических смол. По данным фирмы, этим способом можно получать сухую сыпучую смесь, хорошо гранулированный агломерат (даже мягкого эмульсионного полихлорвинила) или глубоко желатинизированный продукт. Продолжительность процесса 2—12 мин. Верхняя часть машины может подниматься и опускаться с помощью электропривода. Так как в камере смешения отсутствует отверстие для вала мешалки, то достижение герметичности не представляет затруднений. Емкость смесителей 165, 300 и 500 дм . [c.102]

    Результатом пластификации аморфных полимеров является повышение подвижности структурных элементов (сегментов, цепей и пачек) вследствие ослабления межмолекулярного или межпачеч-ного взаимодействия. Внешне это проявляется в смещении температурных интервалов физических состояний полимеров в сторону более низких температур. В зависимости от эффективности и количества взятого пластификатора может происходить понижение либо только Тс полимера, либо Тс н Т одновременно [57]. У полимеров, применяемых для получения покрытий, желательно иМеть более низкими оба температурных перехода, так как Т . определяет условия пленкообразования, а Тс — морозостойкость получаемых покрытий. [c.36]


Смотреть страницы где упоминается термин Пластификация внешняя: [c.210]    [c.843]    [c.105]    [c.28]    [c.150]    [c.39]    [c.525]    [c.270]   
Практическое руководство по синтезу и исследованию свойств полимеров (1976) -- [ c.104 ]

Введение в химию высокомолекулярных соединений (1960) -- [ c.73 ]

Лакокрасочные покрытия (1968) -- [ c.23 , c.444 ]

Химия и технология полимеров Том 2 (1966) -- [ c.250 , c.260 , c.488 , c.575 ]




ПОИСК





Смотрите так же термины и статьи:

Пластификации



© 2025 chem21.info Реклама на сайте