Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радий ЗСЮ излучение

    Радиационная стойкость. Воздействие на смазочные материалы излучений высоких энергий (у-лучей, а- и р-частиц, свободных электронов) приводит к глубоким химическим изменениям их состава и свойств. Эти изменения зависят от исходного состава смазочного материала и дозы облучения. Суммарная доза до 5-10 — 5-10 рад вызывает существенные изменения свойств смазок. Большие дозы излучения ( >7-10 рад) разрушают волокна загустителя и разжижают смазки. [c.363]


    Изменения, происходящие в облучаемом объекте под воздействием различного рода излучений, зависят от величины энергии, поглощенной облучаемым объектом. Количество энергии любого вида излучения, поглои енной 1 г вещества, называется поглощенной дозой излучения, которая измеряется в радах рад равен 100 эрг энергии, поглощенной I г любого вещества (независимо от вида ионизирующей радиации), Произ- [c.260]

    В 1900 г. Крукс (см. гл. 12) обнаружил, что свежеприготовленные соединения чистого урана обладают только очень незначительной радиоактивностью и что с течением времени радиоактивность этих соединений усиливается. К 1902 г. Резерфорд и его сотрудник английский химик Фредерик Содди (1877—1956) 5 высказали предположение, что с испусканием альфа-частицы природа атома урана меняется и что образовавшийся новый атом дает более сильное излучение, чем сам уран (таким образом, здесь учитывалось наблюдение Крукса). Этот второй атом в свою очередь также расщепляется, образуя еще один атом. Действительно, атом урана порождает целую серию радиоактивных элементов — радиоактивный ряд, включающий радий и полоний (см. разд. Порядковый номер ) и заканчивающийся свинцом, который не является радиоактивным. Именно по этой причине радий, полоний и другие редкие радиоактивные элементы можно найти в урановых минералах. Второй радиоактивный ряд также начинается с урана, тогда как третий радиоактивный ряд начинается с тория. [c.164]

Рис. У.П иллюсгрирует излучение альфа-частицы радием-226. Ядро радия теряет два протона, так что его атомный номер уменьшается с 88 до 86. Оно также теряет дна нейтрона (из-за чего массовое число уменьшается на четыре — до 222), становясь изотопом другого элемента - радона-222. Процесс распада представляется следующим уравнением Рис. У.П иллюсгрирует <a href="/info/133030">излучение альфа</a>-частицы радием-226. Ядро радия теряет два протона, так что его <a href="/info/7168">атомный номер</a> уменьшается с 88 до 86. Оно <a href="/info/991897">также теряет</a> дна нейтрона (из-за чего <a href="/info/6845">массовое число</a> уменьшается на четыре — до 222), становясь <a href="/info/1823425">изотопом другого элемента</a> - радона-222. <a href="/info/140632">Процесс распада</a> представляется следующим уравнением
    Под действием больших энергий ионизирующих излучений, активирующих молекулы смазочного материала, в них происходит разрыв химических связей. При взаимодействии образовавшихся свободных радикалов между собой или с другими активированными молекулами получаются новые соединения, строение и свойства которых отличаются от исходных. Обычно протекают реакции полимеризации и окисления, при которых образуются летучие продукты малого молекулярного веса. Минеральные и синтетические масла после облучения темнеют, становятся более вязкими, а при поглощении больших доз излучений даже желатинируются или твердеют. То же происходит в консистентных смазках с масляной основой. На начальной стадии облучения структурный каркас мыльных смазок разрушается, и смазки размягчаются. В дальнейшем при желатинировании жидкой фазы смазки затвердевают, становятся хрупкими. Глубина изменений зависит от дозы поглощенных излучений и химического состава смазки. Значительные изменения свойств большинства смазок начинают проявляться при поглощенной дозе излучений 1-10 рад. Однако разработаны смазки, в 5—7 раз более стойкие [12]. [c.666]


    Данные, приведенные в табл. 12 и 13, также не выявляют существенных различий между радиационным и термическим крекингом цетана и газойлевых фракций. Так, поглощение 900 рад излучения приводит к увеличению выхода продуктов крекинга всего на 4,4% вес. Особо следует отметить, что в опытах с цетаном (табл. 13) инициируемое облучением разложение изу- чали в условиях, когда термический крекинг не протекал следовательно эти данные характеризуют продукты, образующиеся при чисто радиационном процессе. Хотя состав продуктов не совпадает полностью с получаемым термическим разложением цетана при 500° С, весьма важно отметить их сходство, особенно в отношении существования максимума для выхода компонентов Са. Этот максимум типичен для термического разложения высших углеводородов, протекающего по механизму свободных радикалов, и может рас- [c.142]

    Лак связывает радий, излучение а-частиц становится невозможным. [c.192]

    Одна из особенностей, общая для радиобиологии и радиационной химии, заключается в зависимости выхода от ЛПЭ (линейной передачи энергии). В радиобиологии величиной, используемой для описания таких эффектов, является биологическая эффективность излучения по сравнению с эффективностью рентгеновских лучей в диапазоне 200— 250 кв. Эта величина измеряется отношением дозы (в радах) рентгеновских лучей 200—250 кв к дозе (в радах) излучения, производящего то же самое биологическое действие. Это отношение называется относительной биологической эффективностью, или ОБЭ. ОБЭ не всегда легко сравнивать вследствие сложности охвата достаточно широкого интервала ЛПЭ, трудностей дозиметрии и некоторых биологических проблем. Однако в тех случаях, когда это было сделано, обычно находили, что ОБЭ увеличивается с ЛПЭ (хотя нелинейным образом) часто в 5—20 раз. В немногих [c.294]

    Эффективность действия излучений зависит от их дозы и проникающей способности. Доза излучения выражается в рентгенах или радах. Излучение, равное 1 рентгену, ионизирует воздух при давлении 760 мм рт. ст. и температуре 0° С с образованием 2083 х X 10 пар ионов. I рад соответствует дозе, при которой I г биологической ткани поглощает 100 эрг энергии 1 рентген соответствует поглощению 83 эрг г. Проникающая способность излучения зависит от его природы и энергии. Энергия частиц обычно измеряется 146 в электрон-вольтах. Электрон-вольт равен энергии, приобретаемой [c.146]

    Кроме того, в качестве излучений высокой энергии можно использовать протоны, дейтоны, а-частицы, ускоренные в специальных ускорителях (циклотрон, генератор Ван-де-Граафа). Пучки быстрых электронов можно получать, используя линейные ускорители, бетатроны или радиоактивные изотопы некоторых элементов (например, " Зг, Сз и др.). Источником квантов больших энергий, кроме уже указанных искусственно получаемых радиоактивных элементов, могут служить мощные рентгеновские трубки для получения у-излучений можно также использовать торможение быстрых электронов, полученных в ускорителях (бетатроне, линейном ускорителе электронов, генераторе Ван-де-Граафа). Источниками нейтронов, кроме атомных реакторов, могут быть радио-бериллиевые и полоний-берил-лиевые источники или специальные ускорители нейтронов. [c.258]

    Рис. V.II. 0-Излучение радия-226. Массовое число при этом уменьшается на 4(2р + 2п), а атомный номер - на [c.323]

    Биологический эквивалент рада (доза излучения) [c.543]

    Единица поглощенной дозы излучения в системе СИ (1 Гр =100 рад) [c.544]

    Возникал вопрос, верна ли теория Планка или же она создана только для объяснения одного-единственного явления Наука наводнена теориями, объясняющими только то явление, ради которого они созданы, и неспособными правильно объяснить другие явления. Возможно, представление об испускании электромагнитной энергии определенными порциями, пропорциональными частоте излучения, было еще одним таким же способом объяснить изолированное явление  [c.338]

    Что же касается положительно заряженных а-лучен, то, как выяснилось, они состоят из частиц, масса которых ра на массе атома гелия, а абсолютная величина заряда — удаоекному заряду электрона. Прямым опытом Резерфорд доказал, что эти частицы представляв собой заряженные атомы гелия. Он поместил тонкостенную ампулу с небольшим количеством радия внутрь большой пробирки, из которой после этого был удален воздух. -Излучение проникало через тонкие стенки внутренней ампулы, но [c.58]

    Микроорганизмы разрушаются проникающим излучением в 10 рад. Поэтому с ними можно бороться ионизирующим излучением. Микроорганизмы из топлива удаляются при ультрафильтрации через мембранные фильтры размером пор 0,35— 0,45 мкм. [c.32]

    Брегер А. X. Источники ядерных излучений и их применение в радиа-ционно-химических процессах. М. 35. ВИНИТИ, 1960. 130 с. [c.246]

    Поглощенная доза излучения, т. е. энергия излучения, поглощенная единицей массы облучаемого вещества, измеряется в радах, I рад (rad общепринятого сокращения русскими буквами нет) соответствует поглощенной дозе излучения, равной 100 эрг на 1 е облучаемого вещества. [c.46]

    Поглощенная доза излучения измеряется в единицах грей (Гр) или рад (рад), мощность поглощенной дозы — Гр/с или рад/с, экспозиционная доза излучения — в Ки/кг или рентген (Р), мощность зоны рентгеновского и " -излучения — в Ки/(кг- с) или Р/с, интенсивность ионизирующего излучения в Вт/м или МэВ/( м ). [c.150]


    Количество энергии, поглощенное при облучении 1 г вещества, называется поглощенной дозой излучения, измеряемой в радах  [c.364]

    Интенсивность радиоактивного излучения образца измеряется в единицах, называемых кюри. Один кюри соотве ствует 3,7-10 ° распадов в секунду. Количество энергии, поглощаемое биологическими тканями при их облучении, измеряется в радах один рад соответствует поглощению 1-10 Дж энергии на килограмм ткани. Более удобно измерять биологическое поражение при поглощении энергии радиоактивного излучения в бэрах. Население высокоразвитых стран облучается не только естественными источниками излучения, но приблизительно в той же мере и источниками, привносимыми цивилизацией. Влияние длительного воздействия на [c.274]

    Тяжесть последствий загрязнения окружающей среды и живых организмов радионуклидами зависит не столько от их концентрации, сколько от влияния ионизирующего излучения (радиации), сопровождающего распад радиоактивных элементов В качестве дозиметрической величины, характеризующей поглощенную энергию излучения, служит 1 ргщ - поглощенная доза (О), при которой 1 кг вещества поглощает 10 Дж энергии, В СИ единица поглощенной дозы - I фей (1 Гр = 100 рад). [c.98]

    В последнее время широкое применение начинает находить способ получения больших концентраций свободных радикалов путем замораживания их при очень низких температурах, когда процессы рекомбинации затруднены. С этой целью свободные радикалы, образовавшиеся в пламени или электроразряде, подвергают быстрому охлаждению до очень низких температур (вплоть до температур жидкого водорода или гелия) или воздействуют светом или ионизирующим излучением на замороженные образцы вещества. Однако, как правило, использовать оптические методы для изучения поведения свободных ради- [c.20]

    ККИ-поглощенная доза излучения (в радах) (20.28) [c.265]

    Сополимеры трифторхлорэтилена с этиленом [— Fj— F 1— Hg—СНг—] имеют примерно эквимолярное соотношение звеньев и содержат до 92% чередующихся структур степень кристалличности 45—60%. Сополимеры не растворяются при комнатной темп-ре в обычных растворителях, набухают в галогенсодержащих углеводородах при 50—120 °С, стойки к воздействию к-т, щелочей, жидкого кислорода, тетраокиси азота и др. агрессивных сред. Характеризуются погодо-, морозо- и износостойкостью, низкой газопроницаемостью, самозатухают. В отличие от политрифторхлорэтилена, сополимеры стойки к ионизирующей радиации (до 10 рад). Излучение Со (мощностью 5—30 Мрад) и электронный пучок вызывают сшивание с образованием структур, стойких к дальнейшему облучению высокими дозами радиации. Сшитый сополимер можно кратковременно применять при темп-ре до 200 °С. Ниже приведены основные свойства сополимеров  [c.398]

    Радиоактивное излучение урана и тория весьма слабо, его трудно уловить. Изучая радиоактивность минералов урана, Кюри обнаружила, что ряд минералов с низким содержанием урана, например смоляная обманка, обладают большей интенсивностью излучения, чем чистый уран. Кюри пришла к выводу, что в этом минерале кроме урана содержится еще какой-то радиоактивный элемент. Поскольку она знала, что все компоненты, содержащиеся в смоляной обманке в заметных количествах, нерадиоактивны, то неизвестный элемент, содержание которого заведомо было весьма низким, должен был быть чрезвычайно радиоактивным . В течение 1898 г. Мария и Пьер Кюри переработали большое количество смоляной обманки, пытаясь обнаружить новый элемент. И в июле того же года этот новый элемент был найден. В честь родины Марии Кюри его назвали полонием. В декабре был открыт еще один элемент — радий. Радиоактивность радня оказалась чрезвычайно высокой интенсивность его излучения в 300 ООО раз больше, чем у урана. Содержание радия в руде весьма мало. Так, из одной тонны руды супругам Кюри удалось получить только около 0,1 г радия. [c.146]

    Следовательно, при дозе в 1 р энергия, поглощенная в воздухе, равна 87 эрг1г или поглощенная доза излучения равна 0,87 рад. [c.262]

    Излучение можно измерять как дозу радиации, поглощенную организмом. Доза радиации в СИ выражается в греях (Гр). 1 Гр отвечает поглощению излучения с энергией 1 Дж одним килограммом вещества. Другая единица измерения дозы радиации - рад 1 Гр = 100 рад. Для того чтобы учесть биологическую эффективность излучения разных типов, используют понятие эквивалентной дозы, которую измеряют в бэрах. Мощность дозы излучения - это отношение приращения дозы к интервалу времени, за который произошло это приращение. Единицы измерения мощности - Гр/с, рад/с и т. п. - Прим. С. С. Бердоносова. [c.352]

    Для количественной оценки действия ионизирующего излучения н вещество используют ряд специальных характеристик [18, 20]. Погло щенной дозой называют энергию ионизирующего излучения, погло щенного единицей массы облученного вещества. Единицей поглощен ной дозы в системе СИ является грэй, а в практической - рад, равны 100 эргам поглощенной энергии на 1 г, или 6,24-10 3 эВ/см . Рентгеново кое и у-излучение оценивают экспозиционной дозой, единицей кото рой в СИ служит Кл/кг, а на практике используют рентген (Р). Доза излучения, отнесенная к единице времени, называется мощностью поглощенной дозы и измеряется в Гр/с-Дж/(кг-с), рад/с, эВ/с, соответственно для рентгеновского и у -излучений - Кл/(кг-с), Р/с. Связь между поглощенной дозой и мощностью дозы дается соотношением [c.109]

    Исследования по применению ионизирующих излучений для промышленных газофазных процессов были начаты во второй половине 50-х годов. Первыми были работы по исследованию хемоядерного синтеза под действием осколков деления в ядерном реакторе. В настоящее время эти работы прекращены из-за больших трудностей по очистке конечных продуктов от наведенной радио истивности и радиоактивных загрязнений [18]. [c.182]

    Процессы, происходящие под действием радиоактивных излучений на воду и водные растворы, привлекли внимание исследователей в первые же годы после выделения весомых количеств солей радия. Пьер Кюри и А.Дебьерн еще в 1901 г. установили, что в растворах солей радия происходит непрерывное выделение водорода и кислорода. В 1914 г. А.Дебьерн высказал предположение о возможности образования радикалов Н и ОН при облучении воды. Затем Г.Фрикке выдвинул гипотезу об активированной воде. В 1944 г. Дж. Вейс выдвинул радикальную теорию радиолиза воды, согласно которой при действии ионизирующего излучения происходит образование атомов Н и радикалов ОН НгО - Н + ОН. [c.192]

    Радиационно-химические реакторы. В радиа-циоино-химическнх реакторах активация молекул обеспечивается поглощением ими ионизирующего излучения высокой энергии, главным образом -излучения или потока электронов- [c.101]

    Внесистемная единица эквивалентной дозы — бэр. Это эквивалентная доза любого вида излучения, которая создает такой же биологический эффект, как и поглощенная доза 1 рад образцового рентгеновского или гамма-излучения. Производные единицы миллибэр (мбэр), микробэр (мкбэр). [c.54]

    Радиевый 7-9квивалент препарата измеряется в миллиграмм-эквивалентах радия. Миллиграмм-эквивалент радия (мг-экв радия-, тд-еа Ка) определяется как -эквивалент радиоактивного препарата, излучение которого при данной фильтрации (при тождественных условиях измерения) создает такую же мощность дозы, что и т-излучение 1 радия государственного эталона радия СССР при платиновом фильтре толщиной 0.5 мм. [c.47]

    Зв (Зиверт) — эквивалентная доза любого вида излучения в 1 кг радиологической ткани, создающая такой же биологический эффект, как и поглощенная доза в 1 Гр фотонного излучения бэр — внесистемная единица нэмереиня, представляющая собой нергию любого вида излучения, поглощенную в 1 Гр ткани, прн которой на(5людается тот же биологический эффект, что и прн поглощенной дозе в 1 рад фотонного излучения. [c.149]

    Р. Оболенцев и соавторы, поставившие своей задачей создание автоматического самопишущего прибора, в первой стадии работы проверяли возможности метода Юза и Вильчевского с тем, чтобы в дальнейшем перейти к основной задаче — созданию прибора-автомата. В качестве источника излучения авторы использовали изотоп Ге , полученный нейтронным облучением обыкновенного железа в виде окиси ГегО . Излучение Ге является настолько мягким, что оно в большой мере поглощается в слое самого препарата. Толщина слоя ГегОд, излучение которого в направлении, перпендикулярном к слою, вдвое ослаблено в результате такого самопоглощения, очень мала и составляет всего лишь 50 ц,. Поэтому авторы применяли источники, полученные нанесением на алюминиевый диск суспензии ГегОд в клее БФ-2 (разбавленном спиртом), при этом толщина слоя после высыхания не превышала 30—40 [А. После термической полимеризации БФ-2 слой препарата покрывали тонким ( 50 ц) защитным слоем чистого клея БФ-2, который также полимеризовался. Источник диаметром 20 лш имел активность 0,2—0,5 мкюри или менее 0,02—0,04 мг-экв радия. Такая малая активность источника обеспечивает достаточную безопасность работы с пим. [c.424]

    О всех, без исключения, впервые выявленных случаях хронических профессиональных отравлений, пневмокониоза, злокачественных и преканцероз-ных новообразований, вызванных химическими воздействиями, наистагме горнорабочих, заболеваний, вызванных рентгеновскими лучами и излучением радия и радиоактивных веществ, хронических профессиональных заболеваний кожи, — здравпункт или другое лечебное учреждение, обслуживающее предприятие, обязано ежемесячно извещать районную (городскую) госсанинспекцию путем присылки не позднее 2-го числа следующего месяца именного списка больных по прилагаемой форме .  [c.306]

    Необычный тип радиа тора, который как раз и является настоящим тепловым излучателем, изображен на рис. 1.18. Это конденсатор для силовой установки, работающей на парах калия, которая сконструирована для использования на космических летательных аппаратах, где тепло может быть отведено только путем теплового излучения в космическое пространство, эффективная температура которого равна абсолютному нулю, или на Землю, средняя телшерату-ра которой равна 15,7° С. [c.15]

    Исследования показали, что при дозе облучения 1000 рад человек погибает, при дозе от 200 до 700 рад смертельный исход наблюдается в 10 и 90% случаев соответственно в случае дозы до 100 рад человек выживает, но велика вероятность заболевания раком. Безопасная доза ионизирующего излучения не должна превышать удвоенного среднего значения дозы облучения, которому человек подвергается в естественных условиях. Исходя из этого установлены допустимые дозы разового облучения (10 бэр) и облучения населения в нормальных условиях за год (0,5 бэр) [182 . Следует заметить, что средняя доза ионизирующего излучения, получаемая за год каждым жителем планеты, колеблется между 50 и 450 мбэр (1 мбэр = 10 бэр), причем на долю космического излучения приходится около 30 мбэр, а на долю радиоактивности горных пород - 50-150 мбэр. Кроме того, необходимо учитьшать и те дозы, которые человек получает от искусственных источников излучения. Так, облучение гфи рентгеноскопии желудка составляет 30 бэр (местное), а при просмофе хоккейного матча по телевизору - 100 мкбэр. В России в 1991 г. средняя доза облучения населения составила 420 мбэр. естественный фон - 237 мбэр и техногенные источники - 183 мбэр, в том числе за счет исгочников медицинского назначения -169 мбэр [183]. [c.99]

    Следует заметить также, что степень опасности радионуклидов зависит не только от характеристики радиоактивного излучения, но и от их способности накапливаться в живых организмах. Быстрее всего из организма выводятся висмут, родий, бром, серебро, кобальт, №1трий, углерод (пфиод полувыведения от 1 до 10 суток). Для теллура, цезия, бария, меди, рубидия, серы, хлора, калия, скандия, магния и сурьмы эта величина составляет от 10 до 100 суток, а для железа, хрома, цинка, мьппьяка, урана, тория, редкоземельных элементов, бериллия, фтора, фосфора - ог 100 до 1000 суток. Период полувьшедения свинца, радия, нептуния, плутония, америция и кальция превьппает 1000 суток [184]. [c.101]

    Для обнаружения и измерения радиоактивности можно использовать вещества, в которых под влиянием излучения возбуждаются электроны. Такие возбужденные излучением вещества в результате возврата электронов в исходные нижние энергетические состояния начинают светиться (флуоресцировать). Например, циферблат светящихся часов покрывают смесью ZnS и чрезвычайно малого количества RaS04. Радиоактивное излучение радия вызывает флуоресценцию сульфида цинка. На этом [c.258]

    Разрушение вещества под действием радиоактивного излучения зависит не только от активности источника, но также от энергии и проникающей способности излучения данного типа. В связи с этим для измерения дозы излучения обычно пользуются еще двумя другими единицами - радом и бэром (третья единица, рентген, в сущности представляет собой то же самое, что и рад). Рад (сокращенное название, составленное из первых букв английских слов radiation absorbed Jose, означающих поглощенная доза излучения )-это энергия излучения величиной IIO Дж, поглощаемая в 1 кг вещества. Поглощение 1 рада альфа-лучей может вызвать большие разрушения в организме, чем поглощение 1 рада бета-лучей. Поэтому для оценки действия излучения его поглощенную дозу в радах часто умножают на множитель, измеряющий относительную биологическую эффективность воздействия излучения на организм. Этот множитель, называемый коэффициентом качества излучения (сокращенно ККИ), приблизительно равен единице для бета- и гамма-лучей и десяти для альфа-лучей. Произведение поглощенной дозы излучения (в радах) и ККИ для излучения данного типа дает эквивалентную дозу излучения в бэрах (начальные буквы слов биологический эквивалент рентгена )  [c.265]


Смотреть страницы где упоминается термин Радий ЗСЮ излучение: [c.398]    [c.110]    [c.330]    [c.438]    [c.541]    [c.120]    [c.55]    [c.364]    [c.165]   
Неорганическая химия (1950) -- [ c.243 ]




ПОИСК





Смотрите так же термины и статьи:

Кон ради

Радий

Радой



© 2024 chem21.info Реклама на сайте