Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карно термодинамический

    Карно доказал, что этот цикл является циклом максимальной экономичности. Не существует других термодинамических циклов, термический к. п. д. которых был бы больше, чем у цикла Карио. Было также доказано, что термический к. п. д. цикла Карно не зависит от природы рабочего тела, от давления, при котором он протекает, от объема газа, участвующего в цикле, а целиком определяется температурами Т1 и Т2 горячего и холодного источников. Термический к. п. д. цикла Карно выражается формулой [c.32]


    Термодинамика как наука была оформлена в работе французского ученого С. Карно (1796—1832) Размышления о движущей силе огня и о машинах, способных развивать эту силу , в которой были изложены основы теории работы тепловых машин. В это же время создается метод циклов, который начинает применяться не только для изучения работы тепловых машин, но и для исследования термодинамических процессов типа фазовых переходов. Этот метод был использован Р. Клаузиусом для изучения термодинамики процесса испарения жидкостей. После введения некоторых упрощений было получено уравнение для расчета процессов фазового превращения веществ в разных агре- [c.13]

    Экспериментально установлено, что если различные виды работы могут быть полностью обращены в теплоту и в идеальном случае могут полностью переходить друг в друга, то обратное преобразование невозможно, так как только некоторая часть теплоты превращается в работу при циклическом процессе. Здесь речь идет о закрытой системе, совершающей круговой термодинамический процесс, а не о единичном акте, так как в последнем случае согласно принципу эквивалентности преобразование тепла в работу можно произвести полностью. Такая система является, по сути дела, или тепловой машиной (система суммарно производит работу над источником работы), или холодильной машиной (источник работы суммарно производит работу над системой). Поэтому неудивительно, что изучение вопросов, связанных со вторым началом термодинамики, исторически обязано исследованию принципа действия тепловых машин, назначение которых состоит в превращении тепла в работу. В фундаментальном труде французского инженера Сади Карно Размышления о движущей силе огня и о машинах, способных развивать эту силу (1824) сделана первая, еще весьма несовершенная попытка сформулировать второе начало термодинамики. В труде Карно рассматриваются три основных вопроса 1) необходимое условие для преобразования теплоты в работу 2) условие, при котором трансформация теплоты в работу может достигнуть максимального эффекта 3) зависимость коэффициента полезного действия тепловой машины от природы рабочего вещества. В труде Карно был сделан совершенно правильный вывод, что коэффициенты полезного действия всех обратимых тепловых машин одинаковы и не зависят от рода работающего тела, а только от интервала предельных температур, в котором работает машина. [c.88]

    Работа холодильных машин основана на том, что от охлаждающей среды отнимается тепло и передается телу с более высокой температурой (воде или воздуху), т. е. происходит переход тепла от менее нагретого тела к более нагретому. Согласно второму началу термодинамики такой переход возможен только при дополнительной затрате работы извне и достигается осуществлением обратного кругового термодинамического процесса или холодильного цикла. В качестве такого холодильного цикла принят обратный цикл Карно, который осуществляется с помощью рабочего тела, называемого холодильным агентом (хладагентом). [c.373]


Рис. 21. Цикл Карно (а) и термодинамическая схема тепловой машины (б). Рис. 21. <a href="/info/32514">Цикл Карно</a> (а) и термодинамическая <a href="/info/1673198">схема тепловой</a> машины (б).
    Сопоставление циклов с влажным и сухим ходом компрессора показывает, что первый ближе к циклу Карно и холодильный коэффициент [е = Со/(Л )] для этого цикла больше, чем для цикла с сухим ходом компрессора. Следовательно, термодинамически цикл с влажным ходом компрессора выгоднее. Однако при сухом ходе компрессора отсутствуют гидравлические удары и повышается коэффициент подачи компрессора. Поэтому цикл с влажным ходом компрессора практически менее выгоден, чем цикл с сухим ходом. [c.126]

    Если происходит не каучукоподобная деформация, а фазовый переход, то изотермические процессы представятся горизонтальными линиями (сила в этом случае не зависит от длины), как показано на рис. 68, б. При одинаковых адиабатах в обоих циклах совершаемая работа больше для цикла с фазовым переходом, который аналогичен использованию конденсации пара в обычном цикле Карно. Термодинамическая эффективность остается неизменной, так как она определяется только двумя рабочими температурами. [c.209]

    Осуществляя цикл Карно, термодинамическая система совершает равновесный (обратимый) теплообмен с двумя телами окружающей среды, имеющими разную температуру. При этом в окружающей [c.49]

    Нетрудно заметить, что ес>е, так как Т —Т ) < Т2—Тх) и, следовательно, в одинаковых условиях цикл Карно термодинамически значительно выгоднее цикла воздушной холодильной машины. [c.30]

    Впервые экономичность термодинамических циклов проанализировал в прошлом веке французский инженер С. Карно. Он исследовал цикл, который занимает в термодинамике особое место и носит название цикла Карно. [c.31]

    Цикл Карно строится в форме диаграммы на графике в координатах Р=Р У). Цикл Карно проводится термодинамически обратимо на каждой его стадии. Он включает две изотермы, характеризующие расширение и сжатие газа по кривым АВ и СО, для температур Т1 и Гг- [c.60]

    Чтобы получить математическое выражение второго начала термодинамики, следует более детально рассмотреть действия идеальной тепловой машины. Идеальной тепловой машиной мы называем такую машину, которая работала бы без трения и без потерь теплоты. В ней рабочим телом является идеальный газ. Работа машины основана на принципе обратимого термодинамического цикла, называемого циклом Карно. [c.66]

    Вторая теорема. Теорема Карно позволяет определить су-шествование новой термодинамической функции, функции состояния системы — энтропии. Теорема гласит КПД тепловой машины, работаюшей по обратимому циклу Карно, выше КПД тепловой машины, работающей по любому круговому циклу между одними и теми же нагревателем и холодильником (при одной и той же разности температур АТ). [c.89]

    Теорема Карно, как показал Томсон, может быть использована для определения термодинамической или абсолютной температуры. Согласно (4.1), [c.20]

    Нз выражения (П.53), справедливого для обратимого термодинамического процесса Карно, следует  [c.94]

    Вид функции (IV, 1) можно определить и другим путем. В соответствии с теоремой Карно — Клаузиуса, достаточно провести обратимый цикл Карно с любым веществом, для которого известно уравнение состояния. Это дает возможность выразить процессы, составляющие цикл, через термодинамические параметры состояния, придав правой части (IV, 1) конкретное выражение. В качестве рабочего тела остановимся на идеальном газе, так как его свойства известны из молекулярно-кинетической теории, Для идеального газа PV = RT поэтому (см. рис. 21) [c.79]

    Покажем теперь, что абсолютная термодинамическая температура 0 совпадает с абсолютной температурой Г, введенной с помощью газового термометра. Пусть Т и — температуры, соответствующие двум изотермам цикла Карно, измеренные газовым термометром. [c.102]

    Непосредственное применение двух первых начал термодинамики дает возможность решать разнообразные конкретные задачи. В некоторых случаях для этого пользуются методом воображаемых обратимых циклов. Можно было бы привести много примеров применения этого метода. Так, в данной книге этот метод был применен для вывода абсолютной шкалы температур (с. 98—103), где мы искусственно ввели ряд последовательно связанных циклов Карно. Таким же путем было получено уравнение Клапейрона—Клаузиуса (IV. 129). Хотя метод циклов во всех случаях приводит к правильному решению задачи, его нельзя считать совершенным, поскольку он требует чисто искусственных построений и обходных путей при решении конкретных задач. Поэтому широкое распространение получил другой, более простой метод — метод термодинамических (характеристических) функций, который по праву можно назвать методом Гиббса. [c.131]


    Отсюда следует, что 01 = АО- , Q и А можно измерить экспериментально. Далее, выбрав две фиксированные температуры (точки плавления льда при нормальном давлении и кипения воды), между которыми проводится цикл Карно, и приняв, что Д0=1ОО, получим абсолютную термодинамическую шкалу, которая совпадает со шкалой идеального газа. [c.61]

    Поэтому обоснования второго начала термодинамики по Карно-Клаузиусу и по Каратеодори играют в термодинамике различную роль и взаимно дополняют друг друга, позволяя с различных точек зрения обсуждать вопрос о свойствах энтропии как нового термодинамического параметра. [c.50]

    Таким образом, цикл Карно занимает особое место среди всех прочих циклов и может быть назван основным термодинамическим циклом. [c.80]

    Хотя влажный пропесс наиболее приближается к циклу Карно и с чисто термодинамической точки зрения кажется более предпочтительным, практически более выгодно применение сухого процесса, Прн влажном процессе из-за весьма интенсивного теплообмена между стенками цилиндра и влажным паром происходит быстрое испарение холодильного агента и осушение его паров, что вызывает ухудшение наполнения цилиндра компрессора, уменьшение его объемного к, п, д, и, следовательно, падение холодопроизводительности машины, [c.720]

    Независимость к.п.д. машины Карно от природы рабочего тела позволила ввести универсальную шкалу температур, свободную от индивидуальных особенностей (физических свойств) термометрического вещества и от произвольности метода измерения температуры. Эта шкала была предложена в 1852 г. Томсоном (Кельвином) и названа абсолютной термодинамической шкалой. [c.81]

    Циклы термодинамические или круговые процессы (13, 14)—совокупность процессов, при завершении которых система возвращается к исходному состоянию. Введены в термодинамику, чтобы в явной форме не рассматривать неизмеряемые термодинамические функции состояния. Расчет баланса тех или иных величин по циклу позволяет находить соотношения между измеряемыми величинами. Фактически представляет собой простейший вариант использования теорем существования различных термодинамических функций. Сейчас этот метод имеет чисто историческое значение. Цикл Борна — Габера (34) цикл Карно (42) термохимические циклы (34) холодильный цикл (44). [c.316]

    Идеальная холодильная машина, как видно из рис. XVI-I, предполагает всасывание компрессором влажного пара и его сжатие в области X < I, где х — паросодержание. Очевидно, даже при достижении в конце сжатия состояния сухого насыщенного пара (х = I), т. е. в предельном варианте реализации обратного цикла Карно, компрессор будет все же всасывать влажные пары хладоагента. Такой процесс, однако, практически невыгоден, так как в результате соприкосновения с нагретыми стенками цилиндра компрессора частицы жидкости будут здесь испаряться без увеличения холодопроизводительности машины при одновременном уменьшении объемного коэффициента полезного действия компрессора. По этой причине компрессор действительной холодильной машины всасывает сухой насыщенный пар, осуществляя его сжатие в перегретой области (адиабата I—2 на рис. XVI-2, б), что составляет третье отличие от идеального рабочего цикла. Заметим, что сжатие паров в перегретой области является термодинамически невыгодным, поскольку на участке 2—3 или /О—// количество холода, приходящееся на единицу затрачиваемой работы, меньше, чем в области влажного пара. Однако небольшой перерасход работы практически перекрывается тем, что вся скрытая теплота хладоагента используется только в испарителе, и производительность компрессора увеличивается за счет возрастания объемного коэффициента полезного действия компрессора. [c.731]

    С середины XIX в. возникают и укрепляются отдельные направления в физической химии. Г. И. Гесс (1836) установил закон постоянства сумм теплот, который способствовал возникновению термохимии. Огромное значение для развития физической химии имело открытие законов термодинамики (Карно, Джоуль, Майер, Клаузиус, Томсон и др.). Гиббсом было создано термодинамическое учение о фазовом и химическом равновесии. Открытие Д. И. Менделеевым периодического закона, создание А. М. Бутлеровым теории химического строения оказали сильное влияние на формирование представлений о взаимосвязи химической природы веществ и их физических свойств. [c.7]

    Введение термодинамической температуры позволяет установить предел, до которого может быть понижена температура любой системы. Если понижать температуру холодильника в цикле Карно (Т2), то согласно уравнению (1.33) величина будет уменьшаться пропорционально Т2 до тех пор, пока не окажется Q2 = 0. При этом соответственно будет и Т2 = 0. [c.30]

    Абсолютная температура Т (47. 48) — обобщенная сила для явлений теплообмена (И, 18, 37). Отличается от температуры, определяемой произвольными термометрическими шкалами, тем что 1/Г — интегрирующий множитель для dQ. Связана с i — температурой по шкале Цельсия (7 = 273,15 К + i) и совпадает с температурой, входящей в уравнение состояния идеального газа. Во все уравнения термодинамики входит только Т. Термодинамически определена В. Томсоном (Кельвином) с помощью цикла Карно. [c.307]

    Принцип эволюции является модификацией принципа Карно-Клаузиуса. Это означает, что эволюция замкнутой системы связана с возрастанием ее энтропии. Другими словами, наиболее вероятным состоянием замкнутой системы является состояние хаоса, т.е максимальной степени неупорядоченности. Естественно, что хаос рассматривается здесь в физическом и термодинамическом аспектах. Это состояние характеризуется отсутствием структурной организации материи, ее предельной гомогенностью. [c.19]

    В качестве основного термодинамического холодильного цикла обычно рассматривают обратный цикл Карно (рис. 18), состоящий из четырех последовательных обратимых процессов двух изотермических и двух адиабатных. Рабочее тело отнимает тепло у охлаждаемого тела при постоянной температуре Гд, подвергается адиабатному сжатию до температуры окружающей среды, передает теило (< = ( о + ) окружающей среде при постоянной температуре и далее подвергается адиабатному расширению в расширительной машине до температуры охлаждаемого тела. В процессе теплообмена между рабочим телом и источниками (охлаждаемым телом и окружающей средой) разности температур принимаются бесконечно малыми. [c.52]

    По сравнению с другими циклами, протекающими в тех же интервалах температур Гj и Гр, холодильный цикл Карно характеризуется максимальной эффективностью е. Поэтому он и рассматривается в качестве основного термодинамического холодильного цикла. [c.53]

    По термодинамической характеристике перенос тепла с.низшего температурного уровня на высший представляет собой обращенный цикл Карни. Соответственно прямому циклу Карно при переходе тепла с температурного уровня Т на более низкий температурный уровень 7 может быть совершена работа АЬ VI сохранен запас тепла Q , па низшем температурном уровне. При этом энергетический баланс процесса выражается равенством [c.203]

    Сопоставление циклов с влажным ходом и сухим ходом компрессора показывает, что первый ближе к циклу Карно и холодпльпый коэффициент для этого цикла больше, чем для цикла с сухим ходом компрессора. Следовательно, термодинамически цикл с влажным [c.209]

    Кроме того, оно может быть использовано для получения абсолютной термодинамической шкалы температур. Действительно, если рассмотреть тепловую мап1ину, работающую по циклу Карно при постоянной температуре теплоприемника (0г), но при разных температурах нагревателя (0 ), то полученную от нагревателя теплоту можно рассматривать как термометрическое свойство. Из второго закона следует, что коэффициент полезного действия должен быть функцией температур нагревателя и теплоприемника т)=/(01,02). Для создания температурной шкалы надо выбрать вид этой [c.60]

    Для получения низких температур может быть использован идеальный (обр 1тимый) цикл Стирлинга, термодинамически эквивалентный циклу Карно. Этот цикл состоит из диух изотерм и двух изохор (рис. ХУП-19) и положен в основу холодильной машины фирмы Филипс , схема устройства и работы которой показаны на рис. XVI1-20. [c.675]

    Все термодинамические способы повышения степени рекуперации тепловой энергии в узлах теплообмена и ТС в целом определяются вторым законом термодинамики [7,20-24] идельаные обратимые процессы протекают без изменения энтропии, в то время как в реальных, необратимых процессах, она возрастает. Наиболее отчетливо это видно из анализа идеального цикла Карно, в котором возможно максимальное превращение имеющегося тепла в работу. Если обозначить количество тепла при температуре потока Т через Ц, а -температура окружающей среды, то теоретически максимально возможное количество работы А, получаемое в цикле Карно, равно Q (Т -Т )/Т . Величина TQ/TJ - часть тепла, которое рассеивается в атмосферу (рис. I). Зависимость цикла Карно от температуры =(Т]--Тд)/Т представлена на рис. 2. Из изложенного вытекает несколько важных термодинамических предпосылок, учет которых при синтезе оптимальных ресурсосберегающих ТС позволяет обеспечивать их высокую эффективность. [c.38]

    Первое начало термодинамики применимо к описанию как обратимых, так и необратимых процессов. В некоторых случаях можно воздействовать на систему таким образом, чтобы необратимый термодинамический процесс протекал обратимым путем. Для этого, как правило, систему необходимо снабжать специальным устройством для совершения работы. Для пояснения этого утверждения удобно сослаться на пример передачи теплоты от более нагретого тела к менее нагретому. Если оба тела привести в соприкосновение, то будет происходить самопроизвольный процесс передачи теплоты от одного тела к другому до тех пор, пока температуры обоих тел не сравняются. Этот процесс носит необратимый характер, так как проведение процесса в обратном направлении без совершения работы невозможно. Тем не менее процесс передачи теплоты можно сделать обратимым, если для этого использовать тепловую машину, например на основе цикла Карно, с идеальным газом. В этом случае система наряду с передачей теплоты будет совершать определенную работу, которая в обратном процессе может быть использована для передачи теплоты от менее нафетого тела к более нагретому [c.18]

    Из термодинамического цикла идеальной машины Карно выаекает, что [c.59]

    Естественно, что и до этого времени был получен целый ряд выдающихся результатов, на базе которых развивались те или иные разделы физической химии. Можно перечислить некоторые из них открытие адсорбции газов (К. Шееле — в Швеции, 1773 г., Ф. Фонтана — во Франции, 1777 г.), адсорбции из растворов (Т. Е. Ловиц — в России, 1785 г.) открытие каталитических реакций и установление представлений о катализе (Г. Дэви и Л. Тенар — в Англии, И. Берцелиус — в Швеции, начало XIX в.) открытие гальванических элементов и исследование переноса тока в электролитах, открытие электролиза (Л. Гальвани, А. Вольта — в Италии, В. В. Петров, К. Гротгус — в России, Г. Дэви, М. Фарадей — в Англии, конец XVHI в. — начало XIX в.) исследование теплоты химических реакций (А. Лавуазье, П. Лаплас —во Франции, 1779—1784 гг., Г. Гесс — в России, 1836—1840 гг.) открытие первого и второго законов термодинамики (С. Карно — во Франции, Р. Майер, Г. Гельмгольц, Р. Клаузиус — в Германии, Дж. Джоуль, В. Томсон — в Англии, середина XIX в.) и последующее развитие термодинамического учения о химическом равновесии (К. Гульберг и П. Вааге — в Норвегии, Гиббс — в США). [c.8]

    Для паросиловых установок в заданном температурном интервале термодинамически наиболее выгодным циклом мог бы быть цикл Карно, однако, его осуществление связано с большими тру дностями. Цикл Карно относительно проще было бы осуществить в области влажного пара (см. рис. 6.5,6 цикл а56Ьа). Это объясняется тем, что в области влажного пара изотермные процессы совпадают с изобарными и могут быть реально осуществлены в котле и конденсаторе. В этом цикле конденсация пара в изотермном процессе Ь-а происходит не полностью, вследствие чего в последующем адиабатном процессе а-5 сжимается не вода, как в цикле Ренкина, а влажный пар, имеющий относительно больший объем. Сжатие пара осуществляется специальным компрессором при затратах относительно большой работы на сжатие (пл. а5рхр2а ), что значительно снижает общую экономичность установки и практически обесценивает термодинамические выгоды цикла Карно. По этой причине цикл Карно не получил практического осуществления и сохраняет лишь теоретическое значение как эталонный цикл, имеющий в заданном интервале температур максимальный термический КПД. [c.158]

    Обычно переход химической энерги г топлива в электрическую осуществляется многостадийно химическая энергия—>-тепло-вая— -механическая — -электрическая энергия. Наибольщие потери происходят на стадии перехода тепловой энергии в механическую даже по самому термодинамически выгодному циклу Карно к. п. д. этого перехода сэставляет лишь около 50%. На практике же к. п. д. газовых и паровых турбин не превышает 45%, дизельных установок — 30%, бензиновых двигателей — 20%. [c.118]


Смотреть страницы где упоминается термин Карно термодинамический: [c.92]    [c.95]    [c.52]    [c.7]    [c.3]   
Физическая химия. Т.1 (1980) -- [ c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Карно

Карно термодинамический основной

Карно, квазистатический термодинамический, критерий обратимости

Основной термодинамический цикл (цикл Карно)

Термодинамические шкалы температуры. Второе начало термодинамики. Энтропия Бесконечно малые квазистатнческие циклы Карно. Функция Карно



© 2025 chem21.info Реклама на сайте