Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карно принцип

    Постулат В. Томсона определяет, что циклически действующая тепловая машина будет являться источником работы, если рабочее тело участвует в круговом процессе между нагревателем и холодильником, которые находятся при разных температурах. Рабочее тело тепловой машины принимает от нагревателя теплоту в количестве при температуре T и передает холодильнику теплоту в количестве Са при температуре Т2 (Т2<.Т ). Разность теплот С]— 2 определяет количество теплоты, пошедшее на производство работы, Численные значения КПД могут быть определены по формулам, приведенным выше. Объединяя формулы (4.4) и (4.5), можно для обратимого процесса из них получить соотношение, определяющее принцип существования энтропии. Однако вначале для выявления новой функции рассмотрим две теоремы Карно С. и Клаузиуса Р. [c.88]


Рис. 111-42. Принцип холодильного цикла Рис. 111-43. Принцип цикла Карно. Рэнкина. Рис. 111-42. <a href="/info/618603">Принцип холодильного</a> цикла Рис. 111-43. Принцип <a href="/info/32514">цикла Карно</a>. Рэнкина.
    Экспериментально установлено, что если различные виды работы могут быть полностью обращены в теплоту и в идеальном случае могут полностью переходить друг в друга, то обратное преобразование невозможно, так как только некоторая часть теплоты превращается в работу при циклическом процессе. Здесь речь идет о закрытой системе, совершающей круговой термодинамический процесс, а не о единичном акте, так как в последнем случае согласно принципу эквивалентности преобразование тепла в работу можно произвести полностью. Такая система является, по сути дела, или тепловой машиной (система суммарно производит работу над источником работы), или холодильной машиной (источник работы суммарно производит работу над системой). Поэтому неудивительно, что изучение вопросов, связанных со вторым началом термодинамики, исторически обязано исследованию принципа действия тепловых машин, назначение которых состоит в превращении тепла в работу. В фундаментальном труде французского инженера Сади Карно Размышления о движущей силе огня и о машинах, способных развивать эту силу (1824) сделана первая, еще весьма несовершенная попытка сформулировать второе начало термодинамики. В труде Карно рассматриваются три основных вопроса 1) необходимое условие для преобразования теплоты в работу 2) условие, при котором трансформация теплоты в работу может достигнуть максимального эффекта 3) зависимость коэффициента полезного действия тепловой машины от природы рабочего вещества. В труде Карно был сделан совершенно правильный вывод, что коэффициенты полезного действия всех обратимых тепловых машин одинаковы и не зависят от рода работающего тела, а только от интервала предельных температур, в котором работает машина. [c.88]

    Второй закон термодинамики возник на основе изучения принципов действия тепловых машин, назначение которых состоит в превращении теплоты в работу. Основоположником здесь является французский военный инженер С. Карно, опубликовавший в 1824 г. небольшую популярную книгу Размышления о движущей силе огня . [c.67]


    Принцип холодильного цикла Карно..................256 [c.204]

    Принцип недостижимости абсолютного нуля. Важнейшим следствием третьего начала термодинамики является недостижимость абсолютного нуля. Принцип недостижимости абсолютного нуля был сформулирован Нернстом в 1912 г. Попытаемся воспроизвести ход рассуждений Нернста. Проведем цикл Карно в интервале между, скажем, комнатной и более низкой температурой. При этих условиях можно получить некоторое количество работы, но так как для нашей цели необходимо отбирать теплоту от источника теплоты с более низкой температурой, то цикл непригоден для производства работы. Однако если мы можем достигнуть абсолютного нуля и использовать его как наинизшую температуру цикла, то тогда согласно второму началу источник теплоты с этой температурой совсем не получит теплоты. Мы имеем, таким образом, систему, которая получает теплоту при более высокой температуре и превращает все количество теплоты в работу. Но тогда подобная машина окажется вечным двигателем второго рода. Чтобы избежать этого следствия, Нернст постулировал невозможность достижения абсолютного нуля. Нернст полагал, что доказал эту теорему на основании исчезновения теплоемкостей при абсолютном нуле и второго начала. [c.189]

    Возникновение термодинамики как самостоятельной дисциплины относится к середине прошлого века, хотя некоторые закономерности, играющие в ней большую роль, как, например, закон Гесса, принцип Карно, были установлены значительно раньше. [c.178]

    Появилась статья Карно, ,Размышления о движущей силе огня в ней был сформулирован принцип, в соответствии с которым производительность тепловой машины не зависит от рабочего вещества, а только от разницы температур. [c.11]

    В последующих заметках Карно четко сформулировал принцип энергии, эквивалентность теплоты и механической энергии. [c.11]

    Чтобы получить математическое выражение второго начала термодинамики, следует более детально рассмотреть действия идеальной тепловой машины. Идеальной тепловой машиной мы называем такую машину, которая работала бы без трения и без потерь теплоты. В ней рабочим телом является идеальный газ. Работа машины основана на принципе обратимого термодинамического цикла, называемого циклом Карно. [c.66]

    Работа в основном представляла собой объединение принципа энергии и принципа Карно и содержала предпосылки для формулировки второго закона термодинамики. По мнению Гиббса — крупнейшего термодинамика последующего времени,— эта статья знаменует собой эпоху в истории физики и является началом термодинамики как науки. [c.12]

    Авторы отказались от традиционного изложения второго начала термодинамики на основе рассмотрения обратимо работающего цикла Карно. По мнению авторов, принцип Каратеодори об адиабатной недостижимости некоторых состояний позволяет значительно логичнее, проще и яснее обосновать второе начало, чем рассмотрение цикла Карно. [c.4]

    Клаузиус первый правильно объяснил действие тепловой машины, объединив принцип эквивалентности с идеей Карно о двух источниках теплоты с различными температурами. Он писал По предположению Карно, производство работы имеет своим экви-лентом только переход от более горячего тела к более холодному без уменьшения количества теплоты. Последняя часть этого предположения (количество теплоты не уменьшается) противоречит первому началу термодинамики и должна быть, если мы хотим соблюдать это начало, отброшена. Мы больше не нуждаемся в другом эквиваленте произведенной работы, после того как мы в качестве такового приняли действительное исчезновение теплоты. Остается, однако, возможным, что переход теплоты происходит одновременно с исчезновением теплоты. ..  [c.89]

    Принцип холодильного цикла Карно [c.256]

    Почему в формулировках Клаузиуса и Кельвина речь идет о круговом процессе — действуя посредством кругового процесса Потому что, например, при однократном расширении идеального газа по изотерме 1—2 (рис. П1.3) в принципе возможно поЛное превращение теплоты в работу [вспомните соотношение (П.33), где Qt= Ат. Но нельзя бесконечно расширять газ, и для повторения операции получения второй и т. д. порций работ необходимо будет его сжать. Если сжимать газ при той же температуре Ti, т. е. по изотерме 2—1 (рис. П1.3), не получится выигрыша работы. Поэтому в цикле Карно газ из состояния 2 расширяют адиабатически до состояния 3, снижая его температуру до T a. Сжатие при T a требует затраты меньшей работы [формула (П.33)1, а поэтому в целом и получается выигрыш работы, равный площади цикла 1 2 3 4. [c.69]

    Иными словами, суммарный итог действия цикла состоит в извлечении из теплового резервуара с температурой теплоты Оса и превращение ее в эквивалентное количество работы, а это невозможно согласно формулировке Кельвина — Карно. Поэтому невозможен и предположенный адиабатический переход ВС, т. е. состояние С недостижимо из В с помощью какого-либо адиабатического процесса. Аналогичным образом можно доказать и эквивалентность принципа Каратеодори формулировке Клаузиуса. [c.71]


    Как самостоятельная дисциплина, термодинамика возникла в середине прошлого века, хотя ряд законов, например закон сохранения энергии Ломоносова, закон Гесса, принцип Карно, имеющих большое значение в современной термодинамике, были установлены значительно раньше. [c.77]

    С одной стороны, классический путь Карно—Клаузиуса рассматривает только частный случай системы с двумя степенями свободы, но существование энтропии здесь обсуждается исходя из принципа, который с достаточным основанием можно считать обобщением опыта всей макроскопической физики, если иметь в виду не просто работу тепловой машины, но и работу произвольного периодически действующего устройства, способного превращать теплоту в работу за счет электрических, магнитных или любых других эффектов. Безуспешные попытки создания подобных устройств не прекращается до настоящего времени. [c.50]

    Принцип эволюции является модификацией принципа Карно-Клаузиуса. Это означает, что эволюция замкнутой системы связана с возрастанием ее энтропии. Другими словами, наиболее вероятным состоянием замкнутой системы является состояние хаоса, т.е максимальной степени неупорядоченности. Естественно, что хаос рассматривается здесь в физическом и термодинамическом аспектах. Это состояние характеризуется отсутствием структурной организации материи, ее предельной гомогенностью. [c.19]

    Принцип холодильного цикла Карно..................250 [c.204]

Рис. 111-42. Принцип холодильного цикла Карно, Рис. 111-42. <a href="/info/618603">Принцип холодильного</a> цикла Карно,
    Основатель термодинамики С. Карно придерживался теории теплорода только в последние годы своей жизни (он умер в 1832 г.) Карно убедился в ошибочности этой теории и первым дал отчетливую, ясную формулировку принципа эквивалентности тепла и работы. Но эти записки его были опубликованы лишь спустя несколько десятилетий после его смерти. [c.46]

    Принцип Карно сыграл ведущую роль в развитии научных основ тепло, техники. На основе этого принципа стало ясно, что для повышения к.п.д-тепловых машин важно идти по пути расширения температурных пределов, между которыми происходит цикл рабочего тела, тогда как замена одного [c.65]

    Выведенную нами из принципа Карно теорему, что для равновесных процессов сумма приведенных теплот не зависит от пути процесса, можно было бы принять в качестве исходного положения как простейшую аналитическую формулировку второго начала (в нашем обзоре — восьмая формулировка)  [c.68]

    Получение низких температур с помощью холодильной машины основано на принципе осуществления обратимого кругового процесса, или так называемого холодильного цикла, который в идеальном случае можно изобразить обращенным циклом Карно. Последний представляет собой замкнутый круговой цикл, состоящий последовательно из изотермических и адиабатических процессов, причем вследствие обратимости последних этот цикл может быть проведен в обратном направлении путем превращения механической работы в теплоту или вводом некоторого количества сравнительно высокого температурного потенциала, что и имеет место в холодильных машинах. [c.608]

    Интересно отметить, что Карно обсуждал энтропийные эффекты еще до открытия закона сохранения энергии. Тем не менее мы называем закон сохранения энергии первым законом термодинамики, а принцип возрастания энтропии вторым законом термодинамики, хотя это и нарушает историческую последовательность их открытия. [c.50]

    Принцип исключенного вечного двигателя есть следствие принципа эквивалентности, он ] же последнего. Мы даже не говорим о том, что принцип исключенного вечного двигателя обращает внимание только на одну сторону явления на невозможность суммарного получения работы в круговом процессе без суммарного (и эквивалентного) поглощения теплоты. Невозможна также суммарная затрата работы в круговом процессе без суммарного (и эквивалентного) выделения теплоты. Но главное не в этом. Главное в том, что из принципа исключенного вечного двигателя не вытекает принцип эквивалентности между работой и теплотой. Принцип исключенного вечного двигателя совместим с вещественной природой теплоты [2]. Читатели познакомятся в главе УП1 с работами Карно, который придерживался вещественной теории теплоты и в то же время проводил анализ действия тепловых машин с позиций принципа исключенного вечного двигателя. [c.112]

    Когда 28-летний Сади Карно писал эти строки (1824 г.), принцип эквивалентности не был еще открыт. Не было еще известно, что любая закрытая система, совершающая круговой термодинамический процесс, является, по сути дела, или тепловой машиной (система суммарно производит работу над источником работы), или холодильной машиной (источник работы суммарно производит работу над системой). Закрытые системы, совершающие круговые процессы, не всегда называют тепловыми (холодильными) машинами. Но такое ограничение связано не с сущностью кругового термодинамического процесса, а с целями, которые преследуют при его проведении. [c.143]

    Усовершенствование циклов и квазициклов путем введения регенерации тепла основано на другом принципе — использовании внутреннего теплообмена между потоками рабочего тела. На рис. 1.6 показано несколько циклов, расположенных в одном и том же температурном интервале, с одинаковыми количествами подведенного и отведенного тепла. Первый из них (рис. 1.6,а) — обратный цикл Карно, в котором процессы 1-2 и 3-4 изэнтропы внутренний теплообмен в цикле отсутствует, есть только внешний теплообмен в процессах 2-3 и 4-1. Второй (рис. 1.6,6)—цикл, в котором процессы 1-2 и 3 -4 связаны теплообменом некоторое количество тепла регенерации Qp передается от потока т охлаждаемого рабочего тела к потоку п нагреваемого тела, вследствие этого линии 1-2 и 3 -4 делаются наклонными. В процессе 2 -3 энтропия уменьшается, а в процессе 4-1 возрастает (в пределе, если теплообмен проводится обратимо при АТ->-0, изменения энтропии будут по абсолютному значению равны). В результате при тех [c.18]

    Однако несмотря на огромное значение Первого начала для аксиоматки термодинамики, оно одно не объясняло принципиального отличия теплоты от работы, не позволяло предсказывать направление и пределы протекания различных процессов и положение равновесия. Все эти задачи были решены после постулирования Второго начала. Основная идея этого закона была высказана в 1824 г. французским инженером С. Карно. Наблюдая за работой водяной мельницы, он сравнил падение воды с переходом тепла от более нагретого тела к менее нагретому. И вода, и тепло в этих процессах могут совершать работу, зависящую от перепада уровней высот или температур. Карно сформулировал принцип, в дальнейшем получивший его имя для производства работы тепловой машиной необходимы два термостата с различными температурами. Это была исторически первая формулировка Второго начала. Однако Карно, исходивший из теории теплорода, нарушил в своих рассуждениях Первое начало, так как по аналогии с водяной мельницей допустил, что количество теплорода в системе остается неизменным, т. в. получил работу практически из ничего. Другими словами, он получил вечный двигатель первого рода, запретив своим принципом создание вечного двигателя второго рода, получающего работу из одного термостата. Позже стало ясно, что теплота, полученная системой из горячего термостата, равна сумме теплоты, отданной системой холодному термостату и совершенной работы. [c.313]

    Б. Клапейрон развил выводы Н. Карно (1834) и ввел ценный для практики метод графического изображения процесса теплопередачи в двигателе. Р. Клаузиус (1822—1888) провел широкие исследования о превращении теплоты в работу (1850). Он рассмотрел этот процесс не только с точки зрения принципа сохранения энергии, но и с качественной стороны на основе кинетической теории. Вслед за ним профессор из Глазго У. Томсон (Кельвин) (1824—1907) выступил с сообщениями о динамической теории теплоты. У. Томсон ввел шкалу абсолютной температуры (шкала Кельвина). В эти же годы вошло в обращение понятие энергия по предложению У. Томсона и шотландского инженера У. Ранкина (1820—1872). Это понятие более точно и конкретно выражает тепловые, электрические и механические, а [c.162]

    Газокомпрессионные холодильные машины. Эти машины по принципу действия отличаются от парокомпрессионных тем, что хладоагент в рабочем цикле газокомпрессионных машин не конденсируется и не испаряется. Следовательно, изобары в обращенном цикле Карно не соответствуют изотермам. В этих машинах хладоагентом обычно служит воздух. [c.194]

    После того как в конце XIX в. были созданы топливные элементы, появилась возможность эффективно осуществлять превращение химической энергии в электрическую. Дело в том, что на эти элементы не распространяются ограничения, налагаемые-циклом Карно. Дальнейшее их усовершенствование шло тем не менее медленно оказалось, что обеспечить эффективный элект-рокаталитический перенос электронов от используемого топлива на анод элемента сложно. В результате удалось создать лишь водородный элемент, дающий достаточную плотность тока. Он успешно работает при низких температурах и пригоден для крупномасштабного производства энергии. Схема, объясняющая принципы работы обычного топливного элемента, приведена на рис. 2.7 Был предложен ряд элементов, использующих другие вид топл ива (спирты, углеводороды), но они работают лишь при( высоких температурах и дают ток небольшой плотности при мал коэффициенте полезного действия. Это ограничивает их, применение для производства энергии, но некоторые типы топливных элементов используются для других целей. Так, один из них применяется в качестве датчика в детекторах, выявляющих наличие спирта в выдыхаемом воздухе. [c.83]

    Исторически Т. возникла как учение о взаимопревращениях теплоты и механич. работы (механич. теория тепла). Толчком к созданию Т. послужило развитие теплотехники и, в частности, изобретенне паровой машины в конце 18 в. Однако значительную роль в создании Т. сыграли многие более ранние открытия в естествознании, в т. ч. изобретение термометра (Галилей, 1592), создание первых температурных шкал (Бойль, 1695, Цельсий, 1742), введение понятий о теплоемкости и так наз. скрытых теплотах — теплоте плавления и теплоте испарения (Блек, 1760—62), и, наконец, установление газовых законов. Непосредственно к открытию первого закона Т. привели опыты Румфорда (1798), к-рый наблюдал выделение большого количества теплоты нри сверлении пушечного ствола, и гл. обр. исследования Майера (1841—42) и Джоуля (1843) по установлению принципа эквивалентности между работой и теплотой и измерению механич. эквивалента теплоты. Основой второго закона Т., сформулированного Клаузиусом (1850) и Томсоном (Кельвином) (1851), послужил труд Карно (1823) Размышления о движущей силе огия и о машинах, способных развивать эту силу , в к-ром впервые был дан анализ работы идеальной тепловой машины (см. Карно цикл). Т. обр., Т. как наука сформировалась в середине 19 в. В последующем важнейшими этапами в развитии Т. явились создание общей теории термодинамич. равновесия (Гиббс, 1875—78) и открытие третьего закона Т. (Нернст, 1906). Параллельно расширялись области применения термоди-намич. законов в различных областях науки и техники. [c.47]

    В термотрансформаторах механического типа изложенные соображения находят прямое выражение в принципе действия. Превратимая часть тепла первичного потенциала Т в тепловом двигателе действительно превращается в работу. Эта работа прямо затрачивается на привод теплового насоса, полезным продуктом которого является тепло вторичного потенциала Т . Если в обеих машинах реализовать обратимые циклы Карно, то [c.5]

    В главе VIII будет излолсено, как Сади Карно применил принцип исключенного вечного двигателя к анализу тепловых машин. [c.86]

    Открытие принципа эквивалентности обязано совместному труду многих людей. Майер и Джоуль завершили открытие вместе с Сади Карно, Сегеном, Мором, Кольдингом, Гольцманном [36]. (И. К.) [c.113]


Библиография для Карно принцип: [c.93]   
Смотреть страницы где упоминается термин Карно принцип: [c.16]    [c.143]    [c.39]    [c.319]    [c.41]    [c.84]    [c.86]   
Понятия и основы термодинамики (1970) -- [ c.145 ]

Понятия и основы термодинамики (1962) -- [ c.144 , c.156 , c.173 ]

Химическая термодинамика (1950) -- [ c.85 , c.97 , c.106 ]

Термодинамика (0) -- [ c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Карно

Карно принцип доказательство Кельвина

Карно, квазистатический суммарное уравнение принципа эквивалентности



© 2025 chem21.info Реклама на сайте