Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Холодильные воздушные

    К первой группе относится оборудование, состоящее из отдельно стоящих механизмов, не связанных между собой средствами передачи движения, и требующее ориентировки только относительно строительных конструкций. В эту группу входят все аппараты без двигателей или с жестко связанными двигателями холодильные, воздушно-компрессорные и электрические агрегаты, у которых машины вместе с двигателями смонтированы на одной станине. Положение этого оборудования должно обеспечивать предусмотренные чертежом отступы и проходы, необходимые для нормальной эксплуатации, ремонта и соблюдения правил безопасности. Разметку положения такого оборудования можно осуществлять путем отмера указанных в [c.51]


Таблица V- . Области применения вихревых холодильных воздушных машин Таблица V- . <a href="/info/1081620">Области применения вихревых</a> <a href="/info/95028">холодильных воздушных</a> машин
    Отопление производственных помещений холодильных станций может быть воздушным или с помощью местных нагревательных приборов центрального отопления. Температура поверхности нагревательных приборов должна быть не выше 150° С. Рециркуляция воздуха с целью воздушного отопления в компрессорном зале, машинном и аппаратном отделениях холодильной станции не допускается. [c.324]

    В зависимости от компоновки поверхности теплообмена аппараты воздушного охлаждения делят на горизонтальные (АВГ) и зигзагообразные (АВЗ). В состав каждого агрегата АВГ входят три холодильные секции, а в АВЗ — шесть секций. Однотипные агрегаты АВГ и АВЗ могут быть скомплектованы в [c.119]

    По области применения масла разделяют на моторные (для карбюраторных, дизельных и авиационных двигателей). трансмиссионные, турбинные, компрессорные (для воздушных и холодильных компрессоров), электроизоляционные, индустриальные (общего назначения, для гидросистем, зубчатых передач, направляющих скольжение, специальные), приборные. В товарном ассортименте более 400 марок масел различного назначения, однако широко распространено ограниченное их число. [c.17]

    Наряду с давлением абсорбции, величина которого принимается, другим основным параметром абсорбционного процесса является температура. Численное значение константы равновесия К уменьшается с понижением температуры, а значение А при этом увеличивается, и из газа извлекается больше жирных углеводородов на единицу объема циркулирующего абсорбента. Поэтому применение для охлаждения воздушных холодильников снижает стоимость эксплуатации абсорбционно-отпарной секции газобензинового завода, а использование искусственного холода увеличивает эту стоимость. Оптимальную температуру можно определить, представив графически зависимость стоимости извлечения углеводородов с помощью холодильного и абсорбционного процессов от средней температуры абсорбции. При этом для данной степени извлечения стоимость разделения углеводородов методом ректификации принимается постоянной. Стоимость абсорбционного процесса извлечения углеводородов определяется стоимостью абсорбции, отпарки, охлаждения абсорбента, величиной затрат на перекачку масла и стоимостью оборудования. [c.135]


Рис. 1-7. Воздушные конденсаторы абсорбционных холодильных установок Рис. 1-7. Воздушные <a href="/info/1081573">конденсаторы абсорбционных холодильных</a> установок
    Если в качестве вторичного теплоносителя используется холодильный агент, АВО рассчитывают на режим конденсации. В системах воздушного охлаждения вспомогательные холодильные циклы подключаются к АВО в различных комбинациях, но в любом варианте комбинированной схемы холодильный цикл должен рассматриваться как вспомогательный, повышающий эффективность и надежность воздушного охлаждения. --------------------- [c.43]

    Возможно и барботирование перегретого пара через слой жидкого аммиака. Например, в параллельной схеме это позволяет отвести 0,18 МВт тепла и дополнительно испарить 590 кг/ч холодильного агента, увеличив тем самым общую массовую нагрузку конденсатора. В этом случае весь объем аммиака поступает в теплообменные секции с температурой /к = 35°С общий тепловой поток на конденсацию возрастает до 1,49 МВт, что соответствует массовому расходу 4700 кг/ч, а количество конденсируемого продукта увеличивается с 2400 до 4100 кг/ч. Эти данные убедительно свидетельствуют о том, что введение в схему такого несложного устройства, как промежуточный сосуд в виде оросительной или барботажной камеры, дает возможность резко повысить эффективность системы охлаждения с АВО. Это лишний раз указывает на то, что различные комбинированные схемы позволяют полнее использовать возможности АВО и систем воздушного охлаждения. [c.50]

    Заметный эффект могут дать изменение схемы обвязки и перераспределение охлаждающего воздуха, особенно при конденсации и охлаждении многокомпонентных смесей. Несмотря на то, что комбинированные схемы с применением вспомогательных холодильных циклов требуют дополнительных капитальных затрат, их работа в схемах систем воздушного охлаждения отличается высокой эффективностью и стабильностью параметров испарения, охлал дения и конденсации холодильного агента. [c.106]

    Эксплуатация воздушных конденсаторов совместно с компрессорами в аммиачных холодильных машинах [c.123]

    На установках риформинга раньше применялись холодильные аппараты, в которых хладагентом была оборотная или свежая вода. В настоящее время с широким внедрением аппаратов воздушного охлаждения основной теплосъем технологических потоков осуществляется в аппаратах воздушного охлаждения, а доохлаждение — в водяных холодильниках. [c.148]

    По области применения масла разделяют на моторные (для карбюраторных, дизельных и авиационных двигателей), трансмиссионные, турбинные, компрессорные (для воздушных и холодильных компрессоров), электроизоляционные, индустриальные (общего назначения, для гидросистем, зубчатых передач, направляющих скольжения, специальные), приборные. [c.437]

    Для охлаждения потоков до более низких температур, чем это возможно в водяных и воздушных холодильниках, применяют специальные способы получения холода. В этом случае используют различные холодильные циклы, в которых в качестве рабочего агента (хладоагента) служат различные веш,ества (сернистый ангидрид, аммиак, пропан, хлористый метил, фреоны и др.), которые легко переводятся в сжиженное состояние при обычных или несколько пониженных температурах. [c.145]

    Во второй половине XIX в. с развитием сернокислотной и газовой промышленности приобретают -распространение процессы абсорбции и очистки газов, создаются и совершенствуются аппараты для этих процессов. В связи с необходимостью хранения и перевозки скоропортящихся продуктов стала развиваться холодильная техника сначала получили распространение воздушные холодильные машины (1845 г.), затем паровые компрессионные холодильные машины (1874 г.). [c.16]

    Простейшей компрессионной холодильной машиной является воздушная холодильная машина, в которой холод получается путем расширения сжатого воздуха в детандере (стр. 554). Холодильный коэффициент этой машины очень низкий. [c.528]

    Принципиальная схема устройства сублимационной сушилки показана на рис. ХУ-37. В сушильной камере /, называемой сублиматором, находятся пустотелые плиты 2, внутри которых циркулирует горячая вода. На плитах устанавливаются противни 3 с высушиваемым материалом, имеющие снизу небольшие бортики. Поэтому противни не соприкасаются поверхностью днища с плитами 2 и тепло от последних передается материалу, преимущественно радиацией. Паро-воздушная смесь из сублиматора 1 поступает в трубы конденсатора-вымораживателя 4, в межтрубном пространстве которого циркулирует хладоагент, например аммиак. Конденсатор включается в один циркуляционный контур с испарителем аммиачной холодильной установки и соединяется с вакуум-насосом, предназначенным для отсасывания неконденсирующихся газов и воздуха. В трубах конденсатора происходят конденсация и замораживание водяных паров. Для более удобного удаления льда обычно используют два конденсатора (на рис. ХУ-37 условно показан один), которые попеременно работают и размораживаются. [c.630]


    Эти данные относптся ко всем основным и подсобным цехам ппсд 1пи, ти , включая холодильные, воздушно-компрессорные и азотные установки, местные котельные ВОТ, технологические установки по регенерации раство- [c.56]

    Например, при 1,3 МПа деэтанизацию осуществляют при температуре верха 15°С, используя аммиачные холодильные диклы. На установках высокого давления для охлаждения и конденсации паров используется водяное или воздушное [c.281]

    Пароводяная эжекторная холодильная машина 11-Э имеегг холодопроизводительность 1 000 000 ккал1ч прн температуре рабочей воды 4-113° С. Холодопроизводительность регулируется количеством включенных главных эжекторов и может быть равна половине или полной производительности. Машина 11-Э состоит из вертикального двухсекционного испарителя, смешивающего барометрического конденсатора, шести главных эжекторов, воздушных эжекторов I и II ступеней, вспомогательного смешивающего барометрического конденсатора. [c.177]

    X 130 м, или 3,4 га. В здании размещены подстанция, насосная для перекачки воды и компрессорная. Блок ректификационной аппаратуры примыкает к одноярусному железобетонному постаменту, на ]<отором, как и на описанной выше установке АТ-6, установлена конденсационно-холодильная аппаратура и променсуточные емкости. Под первым ярусом постамента расположены насосы технологического назначения для перекачки нефтепродуктов. В качестве огневых нагревателей мазута, нефти и циркулирующей флегмы применены многосекционные печи общей тепловой мощностью около 160 млн. ккал/ч с прямым сводом, горизонтальным расположением радиантных труб двухстороннего облучения и нижней конвекционной шахтой. Печи потребляют жидкое топливо, сжигаемое в форсунках с воздушным распылом. Предусмотрена возможность использования в качестве топлива газа. Ниже приведены технико-экономические показатели установок АВТ различной производительности (на 1 т нефти)  [c.321]

    Схема № 3. Компрессорную перекачку с предварительным охлаждением (рис. 102) применяют для дальнего транспортирования. Необходимость выбора такой схемы обусловлена тем. что несмотря на высокое давление подаваемого от источника углекислого газа обычная беском-прессорная или компрессорная перекачка здесь неприемлема, так как указанные схемы приводят к конденсации углекислого газа в трубопроводе и формированию двухфазной смеси. Согласно предлагаемой схеме, двуокись углерода вначале сжимается в компрессорах (линии 1,1 ) и переводится в новое термодинамическое состояние —в область сверхкритической температуры и давления, т. е. в область, где i>tкp и р>ркр. Затем проводят изобарическое охлаждение и конденсацию транспортируемой среды в теплообменном аппарате (линии 2,2 ) в результате чего температура двуокиси углерода становится ниже критической температуры, и сама углекислота переходит в жидкое состояние. В качестве теплообменного аппарата может быть использован либо аппарат воздушного охлаждения, либо теплообменник специальной холодильной установки. Аппарат воздушного охлаждения применим лишь в условиях, если температура окружающего воздуха не превышает 20—25 °С. Только при этом может быть обеспечен перевод охлаждаемой среды в область tособенности нашей страны, схема с аппаратами воздушного охлаждения может быть рекомендована за редким исключением в большинстве районов. [c.170]

    Двуокись углерода от источника может поступать на головные сооружения магистрального трубопровода и в двухфазном состоянии. Для однокомпонентного продукта это неравновесное состояние. Технологическая схема может быть нескольких вариантов, выбор которых зависит от соотнощения температуры грунта и газожидкостной смеси, поступающей от источника. Если i>imai, т. е. температура смеси выше максимально возможной температуры грунта на глубине заложения, то целесообразно смесь предварительно сконденсировать и переохладить в теплообменной секции аппарата воздушного охлаждения ABO или специальной холодильной установки (рис. 105), а после этого осуществить безнасос-ную (линия 2) или насосную перекачку. [c.172]

    Холод получают в абсорбционно-холодильных установках. Их работа основана на использовании низкопотенциального тепла конвертированной парогазовой смеси и отпарного газа разгонки газового конденсата. Предусмотрена тонкая очистка газа от СО и следов СО2. С этой целью устанавливается один агрегат метанирования 44. Он состоит из метанатора 44, двух подогревателей воды 43 и 42, аппарата воздушного охлаждения 41 и влагоотделителя. Очистка газа идет в присутствии катализатора. Агрегат синтеза аммиака при 32-10 Па работает с высокой степенью использования азотоводородной смеси при повышенной концентрации инертных газов в цикле, повышенной производительности катализатора, в нем происходит полная отмывка азотоводородной смеси от следов СО2. Последнее предотвращает опасность попадания твердых частиц аммиачно-кар-бонатных солей в аппаратуру высокого давления. Температура корпуса колонны синтеза 38 не должна превышать по расчету 250 °С. Колонна конструктивно выполняется из рулонированных и цельнокованных царг, сваренных между собой. Колонна синтеза 38 загружается гранулированным железным катализатором, который механически более прочен, чем кусковой, и создает меньшее гидравлическое сопротивление. [c.206]

    Для написания разделов Эксплуатация воздушных конденсаторов совместно с компрессорами в аммиачных холодильных машинах и Эксплуатация воздушных конденсаторов совместно с паровыми турбинами в силовых установках (глава VI) был привлечен инженер Ю. И. Огладков. [c.5]

    На логарифмическую разность температур оказывают влияние практически те же факторы, что и на величину Кф, но особенно 0ср зависит от изменения температуры t[ на входе в твп-лообменные секции. Температура t[ может отличаться от температуры охлаждающего воздуха на входе в ABQ ti на 3—б°С, что обусловлено рециркуляцией теплого воздуха, подогревом в вентиляторе и при его движении до теплообменных секций. Если в период испытаний на всасывание вентиляторов попадает воздух с повышенной температурой, что наблюдается при групповой установке АВО на технологических площадках, то вер определяется с большой ошибкой. Особенно тщательно к определению и оценке следует подходить при испытаниях АВО, работающих в режимах конденсации холодильных агентов. Если установлены причины неудовлетворительной работы оборудования, приступают к разработке мероприятий, повышающих эффективность систем воздушного охлаждения. [c.77]

    ЖЧХ отличается повышенной коррозионной стойкостью в газозой, воздушной, ш,елочной средах, в условиях трения и износа. Жаростоек в воздушной среде до 500 °С. Области применения холодильные плиты доменных печей, колосники агломерационных машин, детали коксохимических установок, детали газовых двигателей и компрессоров, горелки и т. п. [c.213]

    Теплообменные аппараты. Применяемые в холодильных установках конденсаторы по способу отвода тепла делятся на 1) проточные, в которых тепло отводится водой 2) оросительно-испарительные, в которых тепло отводится водой, испаряющейся в воздух 3) конденсаторы воздушного охлаждения. Для холодильных установок большой и средней производительности обычно используют проточные конденсаторы, представляющие собой горизонтальные и вертикальные кожухотрубчатые и гори-зонтальныр змеевиковые теплообменники (см. главу VIII), в которых змеевики заключены в кожух (кожухозмеевиковые). Реже применяют элементные теплообменники. Конденсаторы воздушного охлаждения используются главным образом в холодильных установках малой холодопроизводительности. В качестве испарителей наиболее часто применяют теплообменники погружного типа и кожухотрубчатые (вертикальные и горизонтальные) многоходовые по охлаждаемой жидкости. [c.662]


Смотреть страницы где упоминается термин Холодильные воздушные: [c.101]    [c.4]    [c.187]    [c.79]    [c.78]    [c.91]    [c.189]    [c.258]    [c.187]    [c.74]    [c.229]    [c.247]    [c.206]    [c.386]    [c.349]    [c.5]   
Основные процессы и аппараты химической технологии Издание 4 (низкое качество) (1948) -- [ c.626 ]




ПОИСК







© 2025 chem21.info Реклама на сайте