Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Контактные устойчивой работы

    Большое разнообразие тарельчатых контактных устройств затрудняет выбор оптимальной конструкции тарелки. При этом наряду с общими требованиями (высокая интенсивность единицы объема аппарата, его стоимость и др.) выдвигаются требования, обусловленные спецификой производства большой интервал устойчивой работы при изменении нагрузок по фазам, возможность использования тарелок в среде загрязненных жидкостей, возможность защиты от коррозии и т. п. Зачастую эти характеристики тарелок становятся превалирующими, определяющими пригодность той или иной конструкции для использования в каждом конкретном процессе. Для предварительного выбора конструкции тарелок можно пользоваться данными, приведенными в табл. VI.2 [3 11]. [c.108]


    Наиболее распространены колпачковые тарельчатые колонны, хотя в последнее время получили преимущество ситчатые, клапанные, чешуйчатые и другие более эффективные виды барботажных устройств, главным назначением которых является максимальное развитие межфазного контакта, что способствует интенсификации массообмена между парами и флегмой. Помимо этого выбор типа контактного устройства определяется и такими факторами, как экономия материала, стоимость, легкость изготовления, чистки и ремонта, стойкость к коррозии, малое падение напора при прохождении паров, широта диапазона устойчивой работы тарелки. [c.247]

    Контактные элементы должны иметь малое гидравлическое сопротивление, высокие эффективность (число теоретических тарелок) и производительность, устойчиво работать в широких диапазонах нагрузок по жидкости и пару, а также обладать конструктивной простотой и пониженной металлоемкостью. [c.142]

    Диапазон устойчивой работы контактного устройства — отношение максимальной и минимальной производительности по газу (пару), при котором устройство работает без заметного снижения эффективности. Этот показатель весьма важен в условиях, когда изменение производительности по пару значительно по высоте аппарата. [c.74]

    На рис. У11-5 показана область устойчивой работы контактных тарелок с переливными устройствами. Максимально допустимая скорость пара в колонне (линия ВС) определяется величиной допустимого уноса жидкости, которая обычно принимается равной 10 %. Линия АВ определяет минимально допустимые скорости пара, соответствующие 10 % провалу жидкости. Справа область устойчивой работы ограничена линией СО, которая соответствует максимальным нагрузкам по жидкости, соответствующим 85 % режима захлебывания . Линия АВ определяет минимальные нагрузки по жидкости, при которых на тарелке обеспечивается устойчивый барботажный слой и отсутствует проскок пара. Нагрузки по пару и жидкости, соответствующие координатам любой точки внутри области, обеспечивают устойчивую работу аппарата. [c.226]

    Построение области устойчивой работы тарелки является одним из основных этапов гидравлического расчета тарелки. В инженерных методиках расчета используются эмпирические зависимости для построения области устойчивой работы, полученные при исследовании контактных устройств на экспериментальных стендах и модельных системах. [c.226]

Рис. IV- . Область устойчивой работы контактных устройств а — для переливных тарелок б — для провальных тарелок. Рис. IV- . Область устойчивой работы контактных устройств а — для переливных тарелок б — для провальных тарелок.

    Во ВНИИгаз была разработана многопоточная ситчатая тарелка типа МД с отверстиями диаметром 6,3 или 10 мм, верхние кромки которых вытянуты на высоту 2 мм, т. е. отверстия на этих тарелках имеют примерно форму сопла. Это позволяет снизить сопротивление, увеличить производительность и диапазон устойчивой работы контактных устройств, а также создает благоприятные условия для обработки загрязненных сред. [c.395]

    Диапазон устойчивой работы трубчато-решетчатых тарелок можно увеличить примерно в 1,5 раза, если на обычную плоскопараллельную решетку положить металлическую сетку [44] с размером ячеек 1,5 X 2 мм, 2,5 X 3 мм или 4 X 4,5 мм (свободное сечение сетки должно быть в 1,5—2 раза больше свободного сечения тарелки). При Рс = 8—12% необходимо использовать сетку с размером ячеек 1,5 X 2 мм, при = 14—18% —2,5 X 3 мм и при Р = 20—25% — 4 X 4,5 мм. В этом случае интервал устойчивой работы тарелок увеличивается вследствие более раннего вступления их в работу [45]. Наличие сетки приводит к увеличению гидравлического сопротивления контактных устройств, однако при рабочей скорости газа (пара), равной 0,8- и ред гидравлическое сопротивление таких тарелок не превышает 350—700 Па (при 0,5 с 10 < 40), что соответствует примерно сопротивлению клапанных (нормализованных), колпачковых и других контактных устройств. [c.399]

    В результате исследования [561 было показано, что аппарат устойчиво работал при изменении скорости газа в кольцевом сечении между цилиндром-распределителем и цилиндром-сепаратором Wx = 1,8 -f-7,7 м/сек. Нагрузка по жидкости изменялась в пределах 0,84 — 8,33 кг/м -сек. При этом унос жидкости не наблюдался. Потеря напора не превосходит потери напора барботажных аппаратов. Объемный коэффициент массопередачи в 5—6 раз выше объемных коэффициентов массопередачи насадочных колонн. Описанное контактное устройство имеет существенное преимущество перед аппаратом Киршбаума и Штора, так как в нем достигается вращательное движение потока пара, способствующее усилению массообмена. [c.140]

    Работа контактных устройств оценивается пропускной способностью по пару и жидкости, способностью разделять рабочую смесь, диапазоном устойчивой работы, гидравлическим сопротивлением и др. [c.285]

    Целями настоящей работы являются анализ устойчивости работы аппаратов с внутренним теплообменом в синтезе высших спиртов из конвертированного природного газа по методу, разработанному в Институте нефтехимического синтеза АН СССР, и обоснование выбора оптимальной схемы контактного аппарата для данного процесса. [c.156]

    ОБЛАСТЬ УСТОЙЧИВОЙ РАБОТЫ КОЛОННЫХ АППАРАТОВ С РАЗЛИЧНЫМИ КОНТАКТНЫМИ УСТРОЙСТВАМИ [c.172]

    Для оценки возможности эффективной работы колонны цри различных нагрузках по пару и жидкости обычно используют область ее устойчивой работы, которая зависит главным образом от типа и конструкций контактного устройства. [c.172]

    Области устойчивой работы известных в настоящее время конструкций контактных устройств существенно различаются для тарелок с переливами, без переливов и для насадок. [c.172]

    Д.1Я высокопроизводительных конструкций контактных устройств, в том числе и с установленными между тарелками специальными отбойными элементами, характерно большое свободное сечение для прохода газа. При свободном сечении порядка (25— 30) % конструкция контактных устройств уже не оказывает заметного влияния на производительность колонны, т. е. колонны с разными конструкциями тарелок при большом свободном сечении имеют примерно одинаковую производительность. Промышленные испытания этих тарелок показали, что эффективность их остается практически такой же, как и у тарелок с малым свободным сечением, но диапазон устойчивой и эффективной работы значительно уменьшается. Для сохранения высокого диапазона устойчивой работы высокопроизводительных тарелок часть их свободного сечения закрывают клапанами. К подобным конструкциям относятся ситчато-клапанные тарелки, тарелки из 5-образ-ных элементов с клапанами и т. д. [c.254]

    В последние годы в практике отечественных и зарубежных предприятий сложилась устойчивая тенденция к замене устаревших контактных элементов (барботажных тарелок, насадок и так далее) на модернизированные или вновь разработанные виды насадок, обладающих более широким интервалом устойчивой работы и большей эффективностью [1 - 21]. [c.163]

    Далее в работе исследуются особенности работы циркуляционного контура КА-БВ-БО. Важным аспектом обеспечения устойчивой работы этого контура является отдувка инертного компонента - азота из рециркулируемого потока. В рассматриваемой системе для отдувки азота предусмотрено деление рецикла К на два потока, один из которых (Р), предварительно подвергаясь очистке от 802, выводится в атмосферу. При этом актуален вопрос о влиянии величины Р на режимы работы системы, и, в частности, на состояние процесса контактного окисления диоксида серы. [c.11]

    Большое разнообразие тарельчатых контактных устройств затрудняет выбор оптимальной конструкции тарелки. При этом наряду с общими требованиями (высокая интенсивность единицы объема аппарата, его стоимость и др.) выдвигаются требования, обусловленные спецификой производства большой интервал устойчивой работы при изменении нагрузок по фазам, возможность использования тарелок в среде загрязненных жидкостей, возможность защиты от коррозии и т. п. Зачастую эти характеристики тарелок становятся превалирующими, определяющими пригодность той или иной конструкции для использования в каждом конкретном процессе. Для предварительного выбора конструкции тарелок можно пользоваться данными, приведенными в табл. 5.2 [3 11]. При выборе тарелки следует учитывать важнейшие показатели процесса. Тарелки, для которых одному из предъявленных требований соответствует балл О, отвергаются для остальных тарелок баллы суммируются. Самой пригодной можно считать тарелку с наибольшей суммой баллов. [c.203]


    Использование ЭВМ для расчета речзлфикационной установки, включающей колонну, теплообменнм-кн, насосы и вспомогательное оборудование, позволяет решить более сложную проектную задачу. В частности, могут быть просчитаны два или несколько вариантов решения одной и той же задачи с последующим выбором наилучшего из цих или даже оптимального в технико-экономическом отношении. В качестве критерия оптимальности можно принять минимум приведенных затрат, которые рассчитываются по формуле (11.38). При проектировании ректификационной установки можно ограничиться выбором наилучшего варианта конструкции колонны при фиксированном, например, условно-оптимальном флегмовом числе [минимизирующем функцию N Я 1) или пу (Р +1)]. При этом можно варьировать такие конструктивные характеристики, как тип и параметры контактных устройств, диаметр колонны, межтарельчатое расстояние, в соответствии с дискретными значениями их нормализованных размеров и пределами устойчивой работы контактных устройств. При такой постановке решения оптимальной задачи из расчета приведенных затрат можно исключить затраты на пар, воду и электроэнергию, поскольку они практически не зависят от конструкции колонны, а-)также часть капитальных затрат, мало зависящих от конструкции колонны — стоимость арматуры, трубопроводов, КИП, фундаментов и т. д. Приведенные затраты будут определяться только переменной частью капитальных затрат К, нормативным сроком окупаемости Гн, а также отчислениями на амортизацию Ка и ремонт Кр, определяемыми в долях капитальных затрат. Принимая [19] 7 н = = 5 лет. Ка = 0,1 и Кр = 0,05, получим  [c.135]

    Питание установки осуществляют от любого источника постоянного тока 1, например от аккумуляторной батареи напряженней 10—15 в. Напряжение на электролитическую ячейку 2 подают через сопротивления (30 ом 100 вт) и (50—100 ом), а контроль за напряжением на рабочих электродах 3 4, также за силой протекающего через ячейку тока осуществляется соответственно с помощью вольтметра 5 и амперметра 6. Потенциал рабочего катода 3, на котором протекает восстановление определяемого компонента, устанавливается в зависимости от выбора сопротивлений и но для точного измерения этого потенциала и контроля за ним на протяжении всего анализа в схему вводят дополнительную цепочку, состоящую из сухого элемента 7 напряжением 1,5—2 е, переменного сопротивления 7 з (100 ом), контактного реле 8, вспомогательного электрода 9 и вольтметра 10. Последний предварительно калибруют или выбирают таким, чтобы можно было измерять напряжение от О до 1,5 й с точностью 0,010 в. Потенциал электрода 3 в ходе электролиза изменяется. Для сохранения потенциала на выбранном уровне контактное реле 8 подключают к двум реле 11 и 12 таким образом, чтобы включаемый последним реверсивный двигатель 13 передвигал движок переменного сопротивления в нужную сторону (по или против часовой стрелки). Мотор 13 снабжают подходящим редуктором, а шкив последнего соединяют приводом с движком Для устойчивой работы установки при малых значениях силы тока, протекающего через ячейку, в схему вводят конденсаторы 14 и 15 емкостью 0,25 мкф и сопротивления и 17 по 100 ож. [c.9]

    На стенде промышленных размеров исследована модифицированная пластинчатая тарелка и получены количественные гидродинамические и массообменные характеристики. Контактное устройство имеет перед применяемыми в промышленности пластинчатыми тарелками ряд преимуществ более широкий диапазон устойчивой работы, более высокие скорости газовой фазы, большая эффективность. Показана перспективность применения модифицированной конструкции пластинчатой тарелки для улавливания химических продуктов коксования из коксового газа. Ил. 8. Табл. 1. Библиогр. список 10 назв. [c.71]

    В противоточных многоступенчатых аппаратах с контактными устройствами с перекрестным током фаз взаимодействие газа и жидкости тоже осуществляется в барботажном слое на переливных тарелках. Устойчивая работа переливных тарелок соответствует таким нагрузкам, при которых газ равномерно проходит через все рабочее сечение контактного устройства, а жидкость сливается через переливные устройства. Неустойчивая работа переливных тарелок характеризуется неравномерным распределением пара по сечению тарелки или нарушением нормального перетока жидкости с одного контактного устройства на другое. Максимальная (верхняя) предельная нагрузка по газу обычно соответствует интенсивному накоплению жидкости на контактном устройстве и заполнению всего переливного устройства вспененной жидкостью. В ряде случаев максимальная предельная нагрузка может определяться чрезмерным уносом жидкости, т. е. выносом значительной части жидкости газом из барботажного слоя на вышележащую тарелку. Минимальная (нижняя) предельная нагрузка соответствует таким скоростям газа, при которых значительная часть жидкости свободно перетекает (проваливается) через контактные устройства на нижележащую тарелку. [c.118]

    В многочисленных разновидностях контактных устройств, которые будут рассмотрены далее, конструкторы стремятся создать наиболее благоприятные условия для обновления поверхности контакта. Однако при этом приходится решать и другие задачи уменьшение брызгоуноса, улучшение сепарации пара и жидкости после осуществления контакта, обеспечение широкого диапазона нагрузок по пару и жидкости и устойчивой работы контактного устройства. Нельзя забывать и об экономической стороне вопроса. Контактные устройства должны быть просты по конструкции, надежны в эксплуатации и удобны при сборке. [c.23]

    Рабочим режимом насадочных контактных устройств являются турбулентный режим и режим эмульгирования, в котором насадочная колонна работает наиболее эффективно. Для того чтобы создать этот режим при любой скорости паров, В. В. Кафаров [67] предложил прием, обеспечивающий устойчивую работу колонны в этом режиме. Этот прием заключается в затоплении колонны до определенного уровня насадки. При этом пар (газ) барботирует через жидкость, создавая принудительное эмульгирование. Устройство это показано на рис. 101. [c.160]

    Целью исследования работы контактного устройства является получение гидродинамической характеристики и эффективности. Гидродинамическая характеристика включает следующие элементы гидродинамические режимы потери напора газовой (паровой) фазы величина брызгоуноса и область устойчивой работы. [c.185]

    До настоящего времени изучались отдельные виды контактных устройств. Рассматривая графики функции Др = / (ш) (например, для насадочных колонн см. рис. 100), можно выделить режимы работы контактного устройства и определить более или менее точно область его устойчивой работы. Исследования, проведенные до настоящего времени, позволили установить принципиальное сходство гидродинамических режимов контактных устройств [140] почти всех типов. Из других элементов гидродинамической характеристики представляет большой интерес определение величины уноса. Последняя часто определяет верхний предел работы контактного устройства. Допустимая величина уноса — величина не вполне точно установленная. Обычно принимают, что она не должна превышать 0,1 кг/кг. [c.186]

    Устойчивость работы контактного устройства характеризуется, очевидно, стабильностью показателей эффективности в возможно более широком диапазоне изменения нагрузок, ограничиваемом верхним и нижним пределами. Естественно, что одним из главных условий эффективной работы является равномерность распределения потоков жидкости по всему объему аппарата и в пределах каждого контактного элемента. [c.191]

    Контактные устройства массообменных аппаратов должны обладать высокими производительностью по пару и жидкости и эффективностью разделения низким гидравлическим сопротивлением широким диапазоном устойчивой работы высокой надеж-ност1>ю и долговечностью, в том числе в условиях загрязненных сред, сред с повышенной вспениваемостью и т. д. [c.324]

    Преимущества насадочных контактных устройств перед тарельчатыми общеизвестны и заключаются прежде всего в исключительно малом перепаде давления на одну ступень разделения. Среди них более предпочтительны регулярные насадки, поскольку они имеют регулярную заданную структуру и их гидравлические и массообменные характеристики более стабильны по сравнению с насыпными. Гидродинамические условия эксплуатации насадок при перекрестном контакте фаз существенно отличаются от таковых при противот е. При перекрестном токе жидкость движется сверху вниз, а пары -горизонтально, следовательно, жидкая и паровая фазы проходят различные независимые сечения, площади которых можно регулировать, а при противотоке - одно и то же сечение. Поэтому перекрестноточный контакт фаз позволяет регулировать в оптимальных пределах плотность жидкостного и парового орощений изменением толщины и поперечного сечения насадочного слоя и тем самым обеспечить почти на порядок превыщающую при противотоке скорость паров (в расчете на горизонтальное сечение колонны) без повышения гидравлического сопротивления и значительно широкий диапазон устойчивой работы колонны при сохранении в целом по аппарату принципа и достоинств противотока фаз, а также устранить такие дефекты, как захлебывание, образование байпасных потоков, брызгоунос и другие, характерные для противоточных насыпных насадочных или тарельчатых колонн. Экспериментально установлено, что перекрестноточный насадочный блок конструкции УНИ, выполненный из металлического сетчато-вяза-ного рукава, высотой 0,5 м эквивалентен одной теоретической тарелке и имеет гидравлическое сопротивление в пределах всего 1 мм рт.ст. (0,13 103 Па), т.е. в 3 - 5 раз ниже по сравнению с клапанными тарелками. Это достоинство особенно ценно тем, что позволяет обеспечить в зоне питания вакуумной колонны при ее оборудовании насадочным слоем, эквивалентным 10 - 15 тарелкам, остаточное давление менее 20 - 30 мм рт.ст. и, как следствие, значительно углубить отбор вакуумного газойля или отказаться от подачи водяного пара в низ колонны. [c.51]

    Оба варианта детектора ( классический ДЭЗ и ДПР) в конечном счете имеют общий механизм образования сигнала, сводящийся к уменьшению электрической проводимости (увеличению сопротивления) газового промежутка между электродами детектора за счет связывания свободных электронов молекулами электроноакцепторных веществ. При этом в ДЭЗ фиксируется уменьшение силы тока при постоянном напряжении, а в ДПР — увеличение разности потенциалов на электродах при постоянной силе тока детектора. Вместе с тем детектор постоянной скорости рекомбинации обладает рядом существенных преимуществ перед ДЭЗ, среди которых следует назвать в первую очередь значительное расширение линейного динамического диапазона по сравнению с той же конструкцией в режиме измерения силы тока. Это достигается как за счет увеличения верхнего предела концентраций, так и за счет снижения предела детектирования, который для ДПР доведен до значения, не превышающего 10 мг/см по 7-гексахлорцнклогексану. Весьма важно также, что повышение напряженности поля при введении анализируемого вещества в ДПР препятствует образованию объемного заряда и устраняет влияние контактной разности потенциалов на процессы сбора заряженных частиц, те.м самым обеспечивая большую устойчивость работы детектора и отсутствие искажений сигнала. [c.127]

    В литературе отсутствуют данные об эффективности тарелок типа Глитч и тарелок конструкции ВНИИнефтемаш, на основании которых можно было бы составить мнение о преимуществах тех и других контактных устройств. Практика показывает, что при больших плотностях орошения и высоких давлениях клапанные нормализованные тарелки недостаточно эффективны. Большой недостаток этих тарелок — возможность заклинивания клапанов в одном из рабочих положений, в результате чего значительная часть жидкости перетекает с тарелки на тарелку без достаточного контакта с газом (паром). Поэтому эффективность прямоточных тарелок оказывается в ряде случаев намного ниже полученной в стендовых условиях. Диапазон устойчивой работы прямоточных клапанных тарелок (при. L/G = onst) не превышает 3—5. В этом диапазоне эффективность (к. п. д.) тарелок может изменяться на 30—40%. [c.392]

    Устойчивая работа переливной тарелки, как й всякого контактного устройства, в первую очередь определяется высокой эффективностью разделения. Поскольку эффективность массообмена в значительной степени зависит от гидродинамических условий на тарелке, устойчивая работа ее соответствует таким нагрузкам, при которых пар равномерно проходит через все сечение тарелки, а жидкость сливается через перели1 ое устройство. Неустойчивая работа переливной тарелки характеризуется нарушением нормального перетока жидкости с тарелки на тарелку, либо неравномерным проходом пара по сечению тарелки. [c.172]

    При небольших нагрузках по пару, приближающихся к минимально допустимым, значительная часть жидкости свободно перетекает через контактное устройство на нижележащую тарелку главным образом вследствие неравномерного распределения потока газа по сечению колонны. При увели<1ении расхода ж рдкости максимально допустимые нагрузки по пару для тарелок всех типов уменьшаются. Для минимально допустимых нагрузок эта зависимость оказывается сложнее и проявляемся по разному в зависимости от типа тарелок. Минимально допустимые нагрузки могут уменьшаться, увеличиваться или оставаться практически неизменными при увеличении расхода жидкости. Единственной линией, резко ограничивающей область устойчивой работы тарелки, является линия максимально допустимых нагрузок, определяемая захлебыванием. Для других режимов не характерно наличие резкого перехода к устойчивой работе тарелки, поэтому остальные линии обычно являются до некоторой степени услов-ньщи. [c.173]

    После соответствующей эскизной проработки нами бьш предложен вариант реконструкции колонны К-5 с установкой 11 перекрестноточных насадочных блоков в укрепляющей секции колонны и 20 секционированных насадочных блоков в отгонной части колонны. При разработке конструкции внутренних устройств колонны К-5 для реализации принципа секционирования, а таюке для расширения диапазона устойчивой работы контактных устройств по жидкостному потоку бьш разработан принцшшально новый низконапорный высокопроизводительный распределитель жидкости. Данный распределитель жидкости способен регулировать подачу жидкостного потока при секционировании [c.13]

    Выполненное расчетное исследование показало, что без изменения существующей схемы теплосъема не удается даже на перекрестноточных контактных устройствах, смонтированных в колонне, обеспечить устойчивую работу вакуумной колонны К-4 при увеличении производительности установ1ст АВТ-3 по сырью. Теория и практический опыт показывают, что для ректификационных колонн, имеющих переменное сечение в укрепляющей части, наиболее целесообразна схема работы с несколькими ш1ркуляционными орощениями. В данном случае, с точки зрения обеспечения получения продуктов разделения требуемого качества, наиболее рациональной оказалась схема с двумя циркуляционными орощениями (ВЦО и НЦО). [c.87]

    Эффективная и устойчивая работа прямоточного контактного устройства соответствует таким нагрузкам, при которых образуется высокодисперсный однонаправленный, газожидкостной поток Верхняя предельная нагрузка определяется здесь в основном допустимой величиной межтарельчатого уноса жидкости, а нижняя — началом образования однонаправленного газожидкостного потока, [c.120]


Смотреть страницы где упоминается термин Контактные устойчивой работы: [c.131]    [c.518]    [c.15]    [c.55]    [c.89]    [c.177]    [c.9]    [c.51]    [c.4]   
Ректификационные и абсорбционные аппараты. Методы расчета и основы конструирования. Изд.3 (1978) -- [ c.172 , c.173 ]




ПОИСК





Смотрите так же термины и статьи:

Область устойчивой работы колонных аппаратов с различными контактными устройствами



© 2024 chem21.info Реклама на сайте