Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Контактные процессы

    Основываясь на приведенном разделении превращений в гетерогенных системах, ограничимся изучением контактных процессов и абсорбции с одновременной химической реакцией. Для упрощения примем изотермические условия проведения этих превращений, помня, что при проектировании реакторов обязательно нужно учитывать взаимосвязь тепловыделения и теплопоглощения. [c.244]


    Для реакций в слое зернистого материала большое значение имеет диффузия реагентов в порах зерна, т. е. внутренняя диффузия. Влияние внутренней диффузии на скорость контактного процесса будет разобрано на стр. 284—289. [c.250]

    Каталитические превращения в системе газ — твердое тело (контактные процессы). Условие промышленного использования химической реакции — достижение большого выхода продукта за возможно меньшее время проведения этой реакции. Однако можно привести много примеров реакций, которые с термодинамической точки зрения должны в определенных условиях проходить с большим выходом продукта, но в действительности протекают очень медленно. Это связано с большим значением энергии активации таких реакций. [c.271]

    Если в системе проходит несколько параллельных и последовательных реакций, то, выбирая соответствующим образом параметры проведения процесса, можно изменить его направление и получить разные продукты с различными выходами. Для изменения энергии активации интересующей нас реакции иногда используются селективные катализаторы, т. е. ускоряющие только данную химическую реакцию. Благодаря применению селективных катализаторов и изменению параметров проведения контактного процесса можно из одного и того же исходного вещества получать разные продукты. [c.272]

    Если учесть сопутствующие этим этапам тепловые процессы и то, что катализатор имеет поры, общую схему контактного процесса можно представить в виде ряда последовательных или одновременных, связанных друг с другом этапов (табл. УПМ). [c.272]

    Кинетическое уравнение контактного процесса, проходящего в изотермических условиях, даже без учета некоторых указанных в табл. Vni-1 простых этапов было бы очень сложным. Обычно считается, что один из этапов оказывает основное сопротивление и лимитирует скорость процесса. Когда сопротивление двух этапов соизмеримо, в кинетическом уравнении необходимо учитывать совместное их влияние на скорость процесса. Однако не всегда удается вывести кинетическое уравнение, основанное на принятом механизме процесса, и тогда приходится пользоваться эмпирическими корреляциями экспериментальных результатов. При этом необходимо помнить, что экстраполировать за пределы данных измерения нужно очень осторожно. Слишком далекая экстраполяция может привести к значительным ошибкам. [c.272]


    При определении скорости контактных процессов, проходящих в промышленных условиях, нужно учитывать движение реакционной смеси относительно катализатора и явления теплопереноса ме- [c.272]

    Физическая адсорбция и хемосорбция. Считается, что химическая реакция, являющаяся одним из этапов контактного процесса, проходит на границе раздела твердой и газовой [c.273]

    Поскольку энергетическое состояние адсорбированных молекул незначительно отличается от их состояния в газовой фазе, физической адсорбцией невозможно объяснить каталитическое воздействие твердого тела на реакцию между устойчивыми молекулами (отсутствует возможность уменьшения энергии активации химической реакции). Однако в некоторых случаях, например, когда реакция на поверхности твердого тела происходит между атомами и радикалами и характеризуется небольшой энергией активации, физическая адсорбция играет определенную роль в контактных процессах. [c.274]

    Открытие явления адсорбции газов при высоких температурах (Тейлор) позволило объяснить адсорбцию в контактных процессах. Молекулы газа, адсорбированные при высоких температурах, связаны с поверхностью твердого тела в мономолекулярном слое силами химического происхождения (хемосорбция). Скорость хемосорбции значительно возрастает с повышением температуры. Энергия активации в данном случае превышает 10 ккал/моль. [c.274]

    Разработанные в настоящее время теории контактных процессов базируются на следующих предположениях 1) реакция проходит на неоднородной поверхности или 2) между адсорбированными на однородной поверхности молекулами существует взаимодействие. [c.280]

    Если скорость контактного процесса определяется сопротивлением поверхностной реакции (являющейся результатом последовательных этапов адсорбции исходных веществ, химической реакции и десорбции продуктов), то он проходит в кинетической области. В этом случае скорость такого процесса можно описать кинетическими уравнениями поверхностной реакции. В зависимости от принятых теоретических предположений вид этих уравнений может быть различным. [c.281]

    В кинетической области скорость процесса не зависит от величины зерен катализатора, природы его пористой структуры и скорости потока реакционной смеси. Повышение температуры увеличивает скорость поверхностной реакции, что обусловливает также возрастание скорости контактного процесса. Концентрации (парциальные давления) реагентов на внешней и внутренней поверхности катализатора и в газовом потоке практически не отличаются друг от друга. [c.281]

    Энергия активации контактного процесса в кинетической области. Утверждение, что реакция в присутствии катализатора проходит с меньшей энергией активации по сравнению с реакцией в гомогенной системе, можно обосновать влиянием сорбционных процессов на поверхности катализатора. [c.281]

    Диффузионные явления в контактном процессе. В соответствии с упрощенной схемой контактного процесса первым его этапом является перенос исходных веществ из газовой фазы к внешней поверхности катализатора. Однако большинство промышленных катализаторов имеет развитую внутреннюю поверхность, иногда в десятки тысяч раз превышающую внешнюю поверхность. Скорость переноса реагентов к внутренней поверхности зерен катализатора оказывает большое влияние на ход контактного процесса. [c.282]

    При установившемся режиме контактного процесса скорости всех последовательных этапов одинаковы. Если сопротивление диффузии реагентов и продуктов в ламинарной газовой пленке, окружающей зерно катализатора, значительно выше сопротивлений других этапов, то контактный процесс проходит во внешнедиффузионной области. [c.283]

    Зависимость (УП1-255) выражает скорость контактного процесса во внешнедиффузионной области. [c.283]

    Скорость контактного процесса во внешнедиффузионной области зависит от гидродинамического режима потока газа в слое катализатора и площади внешней поверхности зерен. Сопротивление переносу массы к внешней поверхности катализатора очень редко лимитирует скорость контактного процесса. Чаще всего при разработке кинетики процесса сопротивление внешней диффузии [c.283]

    Необходимо также отметить, что даже при низких значениях коэффициента использования внутренней поверхности катализатора т) кажущаяся энергия активации контактного процесса не уменьщается до значений <> 1—3 ккал/моль, характерных для внешнедиффузионной области. [c.289]

    Влияние внутренней диффузии на ход контактного процесса наблюдается, когда скорость этого процесса зависит от таких факторов, как, например, величина зерна или структура массы катализатора, с которой связано значение эффективного коэффициента диффузии. Во внутридиффузионной области концентрации реагентов на внутренней поверхности зерна отличаются от их концентраций внутри зерна. [c.289]


    Для определения влияния внутренней диффузии на скорость контактного процесса нужно знать уравнение скорости в кинетической области и значения эффективного коэффициента диффузии Dg. Здесь коэффициент можно найти по результатам измерений скорости реакции на зернах разных грануляций либо рассчитать, если известны коэффициенты молекулярной или кнудсеновской диффузии и принята определенная модель внутренней структуры зерна (значения и тг). [c.289]

    В контактном процессе используются твердые катализаторы платина (5—10 вес. %), осажденная на асбесте, или предпочтительно пятиокись ванадия, промотированная щелочью и осажденная на носителе из пемзы или кизельгура. Эти катализаторы сопоставлены с железным катализатором на рис. 1Х-10. [c.327]

    Магнезол — синтетический водный силикат магния. Он применяется в промышленности для очистки смазочных масел в условиях контактного процесса [32]. Регенерация производится экстракцией темноокрашенных адсорбированных веществ ацетоно-лигроиновой смесью при 32,2—37,8° С. [c.266]

    Теперь общеизвестно, что это изменение в свойствах происходит вследствие избирательной адсорбции сернистых, азотистых и кислородсодержащих соединений, а также и полициклических ароматических углеводородов. В настоящее время в промышленности на основе этих свойств используются два процесса — контактный процесс и перколяция. Как показывает название, контактный процесс заключается в контактировании масла и адсорбента в течение определенного времени и при определенной температуре, после чего отделяют адсорбированные нежелательные компоненты. Таким образом, процесс соответствует одноступенчатой фракционировке. Он часто применяется после кислотной очистки для удаления кислотных остатков, нейтрализации и осветления в одно и то же время. [c.270]

    Преимущество перколяции состоит в том, что с помощью одностадийного процесса можно получить несколько различных продуктов, причем последние имеют более высокое качество, чем полученные при контактном процессе, который к тому же дает только один продукт. Именно поэтому перколяция — единственный процесс, который пригоден для получения петролатумов, парафина и обесцвеченных или слабоокрашенных фармацевтических масел. [c.272]

    На печи установлены приборы контроля температуры и передаваемого тепла, которые предохраняют адсорбент от перегрева, увеличивая таким образом срок его службы. Регенерация адсорбентов после перколяции осуществляется десорбцией и вытеснением адсорбированных веществ полярными растворителями, которые исследованы и запатентованы. Среди них спирт в смеси с ледяной уксусной кислотой [50], водные растворы сульфоновых мыл [51], изопропиловый снирт, содержащий до 20% воды [52], и смесь 90% бензола и 10% ацетона [53] — все они исследованы, но не применяются в промышленности. Магнезол, который используется в контактном процессе для очистки смазочных масел, может быть регенерирован лигроино-ацетоновой смесью при 32—38° С [54]. [c.274]

    С л и н ь к о М. Г., Определение условий устойчивости для экзотермических контактных процессов в псевдоожиженном слое. Кинетика и катализ, 1, № 10, 153 (1960). [c.176]

    Контактный процесс на поверхности конденсированной фазы протекает в несколько стадий подвод вещества к внешней поверхности контакта, подвод вещества к внутренней поверхности контакта, сорбция исходных веществ на активной поверхности, собственно химическая реакция, десорбция продуктов реакции, внутренний [c.132]

    Естественные глины, в том числе и бентониты, получили широкое применение в контактных процессах очистки смазочных масел в качестве отбеливающих веществ. Они приобретают высокую отбеливающую способность после сернокислотной активации и сушки при температуре не выше 100 — 120° С. Для каталитических крекинг-процессов глины после сернокислотной активации прокаливают при 580—600° С теряя прп этом обесцвечивающую способность, они приобретают каталитическую способность и полностью сохраняют ее в течение длительного времени. Это важнейшее свойство бентонитовых глин позволяет успешно применять их в качестве катализаторов крекинга. [c.72]

    Монография посвящена одной из самых актуальных проблем современной химической технологии — расчету аппаратуры каталитических процессов на основе количественного описания физико-химических явлений в реакторах. В книге подробно рассмотрены теория и методы расчета химических реакторов для контактных процессов, вопросы использования математического моделирования и методов теории подобия при оптимальном проектировании и проектировании конкретных аппаратов для процессов синтеза аммиака, окисления двуокиси серы, каталитического крекинга нефтяных фракций и др. [c.4]

    В соответствии с теорией можно принять, что скорость потока не влияет на толщину слоя, и применять теорию обычного слоя для большинства задач, связанных с контактными процессами. Лучшие результаты дает использование вязкости основного потока, худшие —использование средней вязкости. [c.90]

    Правильный выбор типа реактора и его проектирование являются важными моментами при создании контактного процесса. При проектировании необходимо учитывать следующие основные факторы 1) характер реакции (жидкофазная, газофазная и т. д.)  [c.133]

    В общ,ую процедуру принятия решений при оптимизации пористой структуры катализатора, рассмотренную в разд. 3.1, входит в качестве обязательного этапа составление математической модели гетерогенно-каталитического процесса на зерне катализатора и идентификация ее параметров. Эта модель должна отражать как геометрические характеристики структуры зерна, так и важнейшие особенности собственно физико-химических процессов, протекаюш,их в нем. Для наглядности представления последних удобно мысленно выделить фиксированную группу молекул исходных веществ, которая участвует в ряде последовательных физико-химических стадий суммарного контактного процесса на зерне катализатора 1) перенос исходных веществ из реакционной смеси к внешней поверхности частиц катализатора 2) перенос исходных веществ от внешней поверхности частиц катализатора к их внутренней поверхности 3) адсорбция исходных веществ на активных центрах катализатора 4) реакция между адсорбированными исходными веществами и перегруппировка адсорбционного слоя 5) десорбция продуктов реакции 6) перенос продуктов реакции от внутренней поверхности частиц катализатора к их внешней поверхности 7) перенос продуктов реакции от внешней поверхности катализатора в объем реакционной смеси. [c.149]

    МЕТОД ИССЛЕДОВАНИЯ КОНТАКТНЫХ ПРОЦЕССОВ, ОСНОВАННЫЙ НА ИСПОЛЬЗОВАНИИ ТЕРМОГРАФИИ, ГРАВИМЕТРИИ И ХРОМАТОГРАФИИ [c.45]

    Это типичный случай большинства простых реакций, протекающих в растворах. Если же реакция происходит только на поверхности между двумя фазами, то говорят, что такая реакция гетерогенна. Имеется очень много примеров реакций этого типа среди них можно отметить контактный процесс окисления ЗОг кислородом на поверхности платино-асбестового катализатора и гидрогенизацию ненасыщенных соединений в жидких суспен-гшях никелевого катализатора Ренея (N 02). Кроме этих двух категорий реакций, имеется группа реакций, так называемых цепных процессов, скорость которых может зависеть не только от химического состава, но также от размера и геометрии поверхности, ограничивающей реагирующую систему. Хотя такие реакции классифицировались как гетерогенные, это определение не точное, поскольку реакция не ограничивается поверхностными слоями скорее всего поверхность лишь способствует процессам, происходящим в объеме газовой фазы или изменяет их. Типичными примерами таких реакций являются цепное окисление водорода, окиси углерода, углеводородов и фосфора. Большинство изученных газофазных реакций относится к этой категории. [c.17]

    Специально выбранные бентониты, которые залегают в Миссисипи, Аризоне и Калифорнии, выщелачиваются серной или соляной кислотами при 104,5° С, растворимое вещество вымывается, а остаток сушится и измельчается. Окончательно измельченный материал пригоден только для контактного процесса он не регенерируется. Бентонит применяется для очистки самых различных смазочных масел и имеет наибольший удельный вес из всех адсорбентов нефтепереработки. Способность к осветлению нефтепродуктов несколько больше, чем у фуллеровой земли. Площадь поверхности составляет обычно 150—170 м г. [c.265]

    Время, необходимое для обработки, обычно составляет полчаса — час, так как считают, что более долгая обработка бесполезна. Калишевский и Рамзай [42] показали, что осветление происходит на ранних стадиях обработки и более быстро при повышенной температуре. Адсорбенты, которые применяются в контактном процессе, не регенерируются и обычно заменяются после первого пробега. [c.271]

    Непрерывный контактный процесс коксования проводят в реакторе при 480—540° С и 2,5 ата. Время проведения крекинга, коксования и отпарки достаточно продолжительно [187. После реактора кокс подается в подогреватель, в котором циркулирующий кокс нагревается за счет частичного его сжигания и снова поступает в реактор, где смешивается с сырьем. В реакторе более легкая часть подаваемого сырья испаряется, а более тяжелая остается на частичках кокса в виде тонкой пленкп, подвергающейся коксованпю с получением газа, жидких углеводородов и кокса последний остается на зародышевой частице, которая, таким образом, все время увеличивается в размерах. [c.319]

    Таким образом, каталитический крекинг Гудри — типичный контактный процесс, впервые осуществленный в нефтяной нромьсшленности в широком масштабе. [c.38]

    Для установления кинетических закономерностей контактных процессов широко используются методы исследования процесса на единичном зерне коктактаото материала. [c.45]

    Использовать дериватограф для исследования контактных процессов, в частности реакций окисления углерода, нельзя, так как опсуггствует система ввода и вывода кислородсодержащего газа в, печь нагрева и тигли не могут обеспечить одинакювые газюданамические условия обтекания гранул исследуемого материала. [c.52]


Библиография для Контактные процессы: [c.170]   
Смотреть страницы где упоминается термин Контактные процессы: [c.103]    [c.243]    [c.283]    [c.284]    [c.289]    [c.297]    [c.52]   
Общая технология синтетических каучуков Издание 3 (1955) -- [ c.82 ]

Краткая химическая энциклопедия Том 2 (1963) -- [ c.459 ]




ПОИСК







© 2025 chem21.info Реклама на сайте