Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соли металлов

    Один и тот же центр может выполнять несколько функций, в частности таким свойством обладают анионные центры, участвующие не только в анионном обмене, но в адсорбции и электронном обмене. Работа некоторых катионных центров связана с изменением валентности катиона (например, Си+ч= Си +), и это позволяет им активно участвовать в процессах адсорбции и электронного обмена по окислительно-восстановительному механизму [5]. Наибольшей каталитической активностью обладают соли металлов переменной валентности (кобальта, марганца, железа, никеля, хрома, серебра, меди), действующие по описанному механизму (см. гл. 2). [c.196]


    Как показано выше (раздел 2.1), окисление углеводородов молекулярным кислородом представляет собой цепной процесс с вырожденным разветвлением, поэтому все, что способствует образованию активных радикалов, должно ускорять этот процесс. Из данных Н. М. Эмануэля [102] следует, что при окислении углеводородов особое значение имеет инициирование реакции в ее начальной стадии. Катализаторы — соли металлов переменной валентности, добавленные к исходному окисляемому веществу,— резко сокращают индукционный период, активизируя начальную стадию процесса, после чего реакция продолжает развиваться, даже если удалить катализатор. [c.78]

    В растворах солей металлов, менее электроотрицательных, чем водород, на катоде может выделяться уже металл. При электролизе кислот (не содержащих кислорода) и их солей на аноде, как правило, разряжаются соответствующие анионы. [c.618]

    В качестве катализаторов применяют различные вещества, например активированный уголь [39], кизельгур, пемза [40], глинозем, каолин, силикагель и боксит, как без добавок, так и пропитанные солями металлов, в частности, солями меди [41]. [c.153]

    Образование олефинов из сульфохлоридов происходит почти количественно, если жидкий сульфохлорид при температуре 200—300° по каплям стекает на катализатор, например глинозем, силикагель, активированный уголь в чистом виде или пропитанный солями металлов. [c.386]

    Процесс проводят практически до полного окисления всех исходных углеводородов под давлением 10—20 ат и при 95—175° в зависимости от исходного сырья и желаемого продукта окисления. Кислород воздуха расходуется при этом почти нацело. В качестве катализаторов пользуются солями металлов жирных кислот или высокомолекулярными спиртами и кетонами от предыдущих операций. Продукты окисления омыляют и перерабатывают, как обычно. Недавно Кирк и Нельсон установили [106], что окисленный нефтяной парафин представляет втадающуюся по свойствам основу для смазок. Они окисляли парафин при 135 воздухом в присутствии смеси стеарата цинка и пиролюзита до кислотного числа 70—90 и соответственно до числа омыления 140— 180. Перед омылением добавляли определенное количество жира или насыщенных жирных кислот. Особенные преимущества дает применение натрового или литиевого мыла [107]. Почти половина оксидата состоит из кислот, а другая половина из спиртов и кетонов [108]. [c.476]

    Концентрированные перекиси бурно разлагаются при смешении с сильными кислотами, под действием солей металлов переменной валентности, аминов, что также может привести к взрыву. Описаны случаи пожаров и сильных взрывов, вызванные кислотным разложением гидроперекиси изопропилбензола. Вследствие недостаточной очистки ацетона от минеральных кислот при отгонке растворителя произошел сильный взрыв. Полагают, что в кубовом остатке при отгонке сконцентрировались перекисные производные ацетона, которые в присутствии кислот взорвались. [c.142]


    Каталитическое хлорирование. Галоидирование парафинов катализируется углеродом, металлами, солями металлов и соединениями, разлагающимися с образованием свободных радикалов. К последним относятся тетраэтилсвинец, гексафенилэтан и азометан, действие которых заключается в инициировании свободно-радикальной цепи. Такие металлы, как медь, по-видимому, частично превращаются в хлориды, являющиеся эффективными катализаторами. Для различных реакций хлорирования применялись хлориды меди, церия, железа, сурьмы, алюминия и в меньшей степени титана и олова. Каталитическое действие их усиливается при нанесении соли металла на сильно развитую поверхность, например на. стекло, пемзу, окись алюминия или силикагель. [c.62]

    Катализаторами, ускоряющими окисление бензинов и дизельных топлив при хранении, могут быть металлические поверхности резервуаров и трубопроводов, а также оксиды и соли, покрывающие эти поверхности. Ускорение окисления вызывается, кроме того, оксидами и солями металлов, которые могут находиться в топливах в виде тонкодисперсной взвеси. Каталитическую активность в основном проявляют металлы переменной валентности— железо, медь, хром, марганец, кобальт [66]. [c.58]

    Другие промоторы. Сами по себе окислы металлов также являются катализаторами. Окись хрома (одну или в смеси с глиноземом) применяют для дегидрогенизации. Этой же цели могут служить окись хрома с добавкой окиси церия, смесь окиси магния, окиси железа и окиси калия, окись молибдена (последняя является также катализатором гидроформинга). Соли металлов, в частности соли галогеноводородных кислот, были первыми синтетическими катализаторами в переработке нефти под действием хлористого алюминия проводились процессы крекинга галоидные соли алюминия служат катализаторами процессов полимеризации и изомеризации, а хлористый водород является их промотором. [c.23]

    Причиной такого износа являются воздействие на трущиеся поверхности агрессивных сред с образованием продуктов коррозии (оксидов и солей металлов) и их механическое удаление при трении, в результате чего обнажается ювенильная поверхность металлов, легко подвергающаяся коррозионному воздействию среды. Процесс этот непрерывно повторяется, что приводит к интенсивному износу трущихся поверхностей. Увеличению указанного износа способствует также и то, что под действием агрессивных веществ ослабляется спай зерен металла в поверхностном слое, и при трении эти зерна легко выкрашиваются, поверхность трущихся деталей становится более шероховатой, ско Шть износа значительно возрастает. [c.281]

    Реакции ароматических соединений с элементарным бромом и хлором в отсутствии таких активных катализаторов, как галоидные соли металлов, тщательно и детально изучались особенно в работах Робертсона и сотрудников [272]. В неполярных растворителях реакция с бромом идет, вероятно, по следующему кинетическому уравнению  [c.446]

    Изучалось также влияние добавки различных химических веществ во время сульфирования углеводородов на ускорение или завершение реакции (при использовании серной кислоты), на уменьшение образования побочных продуктов (при применении высококонцентрированного олеума или ЗОз) или на изменение соотношения образующихся изомеров. Эти добавки рассматриваются как катализаторы или промоторы сульфирования. Но так как ароматические углеводороды легко сульфируются, вопросу ускорения этой реакции но уделялось достаточного внимания. Отмечается, что при высокой температуре (около 250°) сульфирование (главным образом моно- и некоторое количество ди-) бензола ускоряется добавлением солей металлов, особенна солей натрия и ванадия, добавленных вместо [5]. Ускорение введения второй сульфогруппы, которое происходит значительно труднее, чем первое, достигается добавлением различных соединений металлов [10, 73, 91], а ртуть может быть использована для облегчения введения третьей сульфогруппы [1031. [c.518]

    Нафтеновые кислоты используют в виде солей металлов, из которых наибольшее значение имеет нафтенат свинца. Нафте-нат свинца употребляют в качестве смазки для сверхвысоких давлений, нафтенаты свинца, марганца и кобальта — в качестве антикоррозионных покрытий. [c.42]

    Олефины образуют комплексные соединения с солями металлов переходных групп  [c.71]

    Благодаря небольшому содержанию двойных связей бутил-каучук стоек к действию кислорода. Соли металлов переменной валентности (Си, Мп, Ре) оказывают незначительное влияние на стойкость каучука [14]. При воздействии ближнего УФ-света или ионизирующих излучений он сильно деструктирует. Для стабилизации в него вводят до 0,5% антиоксиданта (неозона Д, НГ-2246, ионола). Бутилкаучук легче растворяется в углеводородах жирного ряда, чем в ароматических, нерастворим в спиртах, эфирах, кетонах, диоксане, этилацетате и растворителях, содержащих амино- и нитрогруппы. Ниже приведены некоторые физические свойства бутилкаучука [15]  [c.349]


    При взаимодействии амидоксимных групп с солями металлов образуются комплексные соединения. [c.357]

    Решающее влияние на эволюцию всех сфер Земли, прежде ьсего на биосферу, оказали зарождение и последующее интенсивное развитие фотосинтеза зеленых растений, затем возникновение живых организмов. Развитие фотосинтеза приводило к выделению больших количеств свободного кислорода в гидросфере, затем в с1Тмосфере и накоплению массы живого вещества сначала в океане, потом и на суше. Поглощаемый фотосинтезом углекислый газ постепенно убывал в атмосфере Земли. Аммиак и метан практически полностью исчезли из атмосферы в результате окисления. Земная атмосфера приобретала качественно новый, близкий к современному азотно-кислородный состав с небольшим количеством углекислого газа. Подобные процессы с изменением химического состава происходили как в морской воде, так и горных породах Земли. И морской воде в результате ускорения окислительных процессов кислоты превратились в соли металлов (хлориды, сульфаты натрия, 1 алия, кальция и т.д.). С изменением pH морской воды менялись [c.42]

    Обычный концентрационный элемент состоит из одинаковых металлических или газовых электродов, опущенных в электролиты различной концентрации (активности), содержащие какую-либо соль металла, из которого изготовлены электроды. Примером может служить элемент а >а")  [c.562]

    КИСЛОТЫ на металл. Основная соль получается при неполном замещении гидроксогрупп основания на кислотный остаток. Ясно, что кислая соль может быть образована только кислотой, основность которой равна двум или больше, а основная соль —металлом, валентность которого равна двум или больше. [c.43]

    Метод заключается в разложении солей металлов, содержащихся в присадках и маслах с присадками, или в их золе, соляной кислотой и комплексонометрическом оттитровывании Зария, кальция и цинка. [c.525]

    В условиях хранения и эксплуатации углеводородное топливо С растворенным в нем кислородом находится в контакте с металлической поверхностью стенками баков для хранения, трубопроводов, насосов. Известно, что металлы, их оксиды и соли катализируют окисление углеводородов. В связи с этим необходимо определить влияние поверхности конструкционных материалов на окисление топлива в условиях хранения соотношение между процессами окисления топлива в объеме и на стенке стадии окисления, на которые воздействует металлическая стенка ингибиторы, которые следует применять для стабилизации топлива в присутствии металлической поверхности и др. Наряду с гетерогенным катализом в топливе. может протекать и гомогенный окислительный катализ, вызываемый растворенными в нем солями металлов. Роль металлов в окислении углеводородов неоднократно исследовалась. Достаточно подробные данные имеются о механизме гомогенного катализа окисления углеводородов растворенными солями жирных кислот. [c.192]

    В США фирма Алокс корпорейшн с 1926 г, окисляет на заводе в Ниагара Фоллз высокопарафинистые фракции нефти, начиная от бензина и кончая парафином, в количестве 10 000 т/год. Кислоты, выделенные из оксидата, применяют не для мыловарения, а исключительно для производства пропиток для тканей (в форме солей металлов), мягчителей, разрушителей пены (в форме солей аминов), флото-реагентов, поверхностно-активных веществ, антикоррозийных средств и [c.475]

    Электрохимические процессы очень часто приводят к образованию новых фаз. Так, при электролизе растворов щелочей у границы электрод — электролит образуется новая газообразная фаза (водород и кислород), возникшая в результате разложения жидкой фазы — воды, а электролиз растворов хлоридов приводит к выделению газообразных водорода и хлора. При электролизе растворов солей металлов на катоде идут процессы образования новых жидких (ртуть, галлий) или твердь[х (медь, цинк, свинец, никель и т. д.) металлических фаз. Во время заряда кислотного аккуму- [ятора твердый сульфат свинца па (одном из электродов превращается в металлический свинец, а па другом — в диоксид свинца. Число этих примеров можно было бы начительно увеличить, но и этого достаточно, чтобы понять, насколько часто следует считаться с воз-никиовением новых фаз в ходе электрохимических процессов. [c.332]

    Смазочные материалы, особенно те, которые нрименяются в двигателях внутреннего сгорания, должны действовать в условиях высоких температур (до 200° С) и в присутствии соло металлов. Такие жесткие условия требуют большой сопротивляемости смазочных материалов, поэтому должно быть исключено применение, в качестЬе основных компонентов смазочных мас1Л таких уязвимых в этом отношенрш углеводородов, как например, олефины. В жестких условиях (температура от 110 до 150° С) наблюдается различная окисляем ость чистых неолефиновых углеводородов, Б первую очередь, некоторых алкилароматических угловодородов, которые наиболее подвержены действию кислорода [129]. [c.307]

    Как показывает рассмотренный пример, при электролизе водных растворов солей, реакция которых близка к нейтральной, па катоде восстанавлнваются те металлы, электродные потенциалы которых значительно положительнее, чем —0,41 В. Если потенциал металла значительно отрицательнее, чем —0,41 В, то на катоде будет выделяться водород . При значениях электродного потенциала металла, близких к —0,41 В, возможно, в зависимости от концентрации соли металла и условий электролиза, как восстановление металла, так и выделение водорода (или совместное протекание обоих процессов). [c.190]

    Чистая нефть, не содержащая неуглеводородных примесей, особенно солей металлов, и пресная вода взаимно нерастворимы, и при отстаивании эта смесьлегко расслаивается. Однако при наличии I Еюфти таковых примесей система нефть—вода образует трудно разделимую нефтяную эмульсию. [c.146]

    Растворение металла, идущее одновременно с образованием Нг из ионов Н в растворе, представляет собой случай, в котором анодный и катодный процессы протекают на одном и том же электроде. (Эти процессы называются полиэлектродными.) При этом как диффузия, так и химические процессы могут стать лимитирующими. Ранние работы по растворению амальгам натрия [7-6] в кислотах и основаниях указывают на то, что скорость реакции имеет первый порядок по Н" и приблизительно порядок /2 по концентрации натрия. Для кислых растворов эти факты объяснялись тем, что процесс лимитируется диффузией. Однако, как показали более поздние исследования [77—80], скорость растворения металлов в различных кислотах и растворителях пропорциональна концентрации недиссоциированной формы кислоты и относительные константы скорости в различных кислотах хорошо ложатся на прямую Бренстеда. По-видимому, в этом случае лимитирующей стадией является перенос протона от молекулы недиссоциированной кислоты к поверхности металла , причем реакция подвергается специфическому катализу кислотами. При растворении солей, таких, как Na l, в системах с перемешивающим устройством предполагается, что скорость реакции лимитируется диффузией, причем диффузия происходит через пограничный слой насыщенного раствора соли на поверхности кристаллов соли. Хотя подобная картина, по-видимому, является правильной для простых солей, таких, как галогеииды щелочных металлов, в случае солей металлов переменной валентности картина может быть другой. Так, например, безводный СгС1з очень медленно растворяется в воде, при этом скорость реакции не зависит от перемешивания. Было обнаружено, что небольшое количество Сг " в растворе оказывает огромное влияние на скорость реакции. Вероятно, в этом случае осуществляется перенос заряда между частицами Сг - в растворе и Сг в твердой фазе. Эти системы, по-видимому, заслуживают дальнейшего изучения. [c.557]

    Имеются данные о способности сульфидов присоединять кислоты и соли металлов, с образованием сульфониевых солей [113], строение которых аналогично строению солей аммония. Например, при действии сероводорода получается комплексное соединение типа [(С Н2 -).1)зЗ]28, в котором содер катся три атома серы двух родов один из них имеет ионогенный характер, другие два входят в состав комплекса и не могут быть обнаружены качественными реакциями на сульфиды до тех пор, пока не разрушена вся молекула. [c.29]

    Хорошо управляемые реакции хлорирования идут при барботирова-. НИИ реагирующих веществ через ванну с расплавленными солями металла, такими, например, как легкоплавящиеся смеси хлоридов натрия, калия, кальция, цинка и алюминия, поддерживаемую при подходящей темпераг- [c.62]

    Применимость этого реагента ограничена, так как он неэффективен при замещении единственного атома галоида при атоме углерода или при замещении винильного галоида. В таких случаях реакция или вообще не идет, или наблюдается значительное разложение. Разложение, по-видимому, происходит вследствие характерной нестабильности группировки с частично галоидированным атомом углерода в присутствии соли металла при повышенных температурах. Эффективность фторидов сурьмы существенно увеличивается, если применять их в форме соединений пятивалентной сурьмы. Последние можно получить смешением трехфтористой сурьмы с ЗЬС15, Вг2 или С12 или превращением трехфтористой сурьмы в пятихлористую при помощи реакции с фтором. Во всех этих случаях получается более энергичный фторирующий агент, приводящий к более интенсивному замещению галоида фтором. Поскольку легкость фторирования фторидами сурьмы зависит как от выбора фторида, так и от природы применяемого галоидалкила, трудно точно предсказать степень фторирования, которую можно ожидать в том или ином случае. [c.74]

    Катализаторы, ускоряющие полимеризацию газообразных олефинов Э жидкие, имеют главным образом кислую природу "И включают 1) кислоты такие, как серная, фосфорная, дигидроксифторборная 2) фосфаты металлов 3) природные гидрориликаты и синтетические алюмосиликаты разного состава 4) соли галоидоводородных кислот, особенно галоидные соли металлов типа Фриделя—Крафтса. Катализаторами полимеризации также являются некоторые металлы и их соединения. [c.187]

    В предложенном механизме образование переходного состояния было выражено в виде двуз стадийного процесса с образованием в первой стадии продуюта присоединения и реакцией ароматических соединений с этим продуктом присоединения в последней стадии (LXXXII). Эта формулировка лучше, так как она указывает на образование продукта присоединения 1 1 между галоидной солью металла и галоидалкилом, процесс, наличие которого было доказано [45, 61]. Однако возможность образования переходного состояния в результате тримолекулярных столкновений всех трех компонентов нельзя исключать, хотя это значительно менее вероятно, чем предложенный механизм. [c.441]

    Хотя по механизму галоидирования в присутствии галоидных солей металлов имеется очень мало работ, весьма вероятно, что эти реакции вполпо аналогичны но механизму реакции Фриделя-Крафтса. Соответственно этому представляется обоснованным механизм (LXXXVII) [c.445]

    В настоящее время известно, что галоиды обладают некоторыми особенностями кислот Льюиса [20, 21, 175]. Вероятно, вторая молекула брома выполняет ту же функцию, что и кислота Льюиса в реакции, катализируемой галоидными солями металлов (LXXXIV). Несомненно, прочность связи углерод—бром, образующейся в а-комплексе, не обеспечивает достаточной движущей силы для разрыва связи бром—бром, поэтому для обеспечения соответствующей скорости требуется какая-то внешняя помощь (LXXXVni)  [c.446]

    При электролизе водных растворов солей металлов 2п, Fe, dr f Ii и др., занимающих в ряду напряжений среднее положение между перечисленными группами, процесс восстановления на катоде происходит по обеим схемам. Масса выделившегося металла не соответствует в этих случаях количеству протекшего электри-чеокюго тока, часть которого расходуется на образование водорода. [c.171]

    Хотя некаталпзируемая реакцпя бромирования весьма избирательна,, бромирование, катализируемое галоидными солями металлов, значительно менее избирательно, например при бромиропанми толуола образуется значительно больше ж-изомера. В настоящее время ужо плюются данные. [c.447]

    Следует указать, что растворимость или псевдорастворимость присадок в маслах обеспечивается наличием больших алкильных или подобных им органических групп (иногда — углеводородов, входящих в состав твердых парафинов). Свойства детергентов, очевидно, связаны с наличием в их составе солей металла. Моющая способность пропадает при удалении солей металла. Иногда молекулы, входящие в состав хвостовых фракций и имеющие большую величину, оказывают и другое полезное де11ствие. Например, алкилированные бисфенолсульфиды сами по себе обладают анти-окислительными свойствами. [c.498]

    Большое внимание уделяют вопросам образования осадка (в результате окислительных процессов) не только в электроизоляционных, но и в турбинных и автомобильных маслах. Химизм этого явления еще не вполне ясен, но, по-видимому, имеет место полимеризация и конденсация продуктов окисления (таких как оксо-и ненасыщенные спирты, альдегиды, кетоны и кислоты) в малорастворимые соединения. В литературе сообщается, что при окислении образуются гидрооксикислоты нафтенового и жирного рядов [90], а также их ангидриды [91]. Окисление трансформаторных масел в отсутствие или присутствии катализаторов, роль которых могут играть соли металлов и жирных кислот 2 —Сдз [92], или неметаллические детали трансформатора (такие, как лак на обмотках, фарфоровые изоляторы и т. д. [93—96], идет с такой же кинетикой, как и окисление углеводородов в других нефтепродуктах [97—102]. Происходящая цепная реакция в промышленной практике может быть успешно ингибирована добавлением небольших количеств антиокислителей, вследствие чего срок службы [c.566]

Рис. П.6. Исследование реакционной способности меди. В каждую п[ю ирку, содержащую по 5 мл раствора соли металла, нужно поместить кусочек медной плас"инки и посмотреть, что происходит. Рис. П.6. Исследование <a href="/info/9287">реакционной способности</a> меди. В каждую п[ю <a href="/info/266113">ирку</a>, содержащую по 5 мл <a href="/info/587468">раствора соли металла</a>, нужно поместить кусочек медной плас"инки и посмотреть, что происходит.
    Константы скорости реакции солей металлов переменной валентности с гидроксипероксидными и с аминопероксидными радикалами весьма высокие (табл. 6.2). Поскольку металл находится в двух формах — окпсленпой и восстановленной, г R02 реагируют с обеими формами, приведенные в таблице копста -ты скорости являются брутто-характеристиками [c.198]


Смотреть страницы где упоминается термин Соли металлов: [c.387]    [c.305]    [c.310]    [c.456]    [c.33]    [c.65]    [c.149]    [c.78]    [c.389]    [c.517]   
Курс теоретических основ органической химии (1975) -- [ c.2 , c.2 , c.2 , c.18 ]




ПОИСК







© 2025 chem21.info Реклама на сайте