Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осмий шестивалентные

    Способность атомов элементов к образованию соединений характеризуется валентностью. Первоначально валентность определяли как число атомов водорода, с которыми может соединиться или которые может заместить атом элемента. Так как атом водорода может соединиться одновременно только с одним другим атомом водорода, его называют одновалентным. В настоящее время можно определить валентность как число атомов одновалентного элемента, с которыми соединяется один атом данного элемента Так, в Н2О кислород двухвалентен, в ЫНд азот трехвалентен, в СН4 углерод четырехвалентен, в РСЦ фосфор пятивалентен, в 8Рв сера шестивалентна, в РеР, рений семивалентен и в ОзО осмий восьмивалентен. [c.126]


    Как и прочие платиновые металлы, осмий проявляет несколько валентностей О, 2+, 3+, 4+, 6+ и 8+. Чаще всего можно встретить соединения четырех- и шестивалентного осмия. Но при взаимодействии с кислородом он проявляет валентность 8+. [c.204]

    Шестивалентный осмий окисляется феррицианидом снова в восьмивалентный  [c.119]

    Задача I. Написать формулы соединений с кислородом следующих элементов одновалентных калия К и серебра Ag, двухвалентных меди Си и никеля N1, трехвалентного железа Ре, четырехвалентных олова 8п и кремния 81, пятивалентных фосфора Р и азота N. шестивалентного вольфрама семивалентного марганца Мп и восьмивалентного осмия Оз. [c.93]

    Известны двух-, трех-, четырех-, пяти-, шести- и восьмивалентные соединения осмия. Наиболее многочисленны и устойчивы соединения четырех- и шестивалентного осмия. [c.631]

    Соединения шестивалентного осмия [c.635]

    Окраска развивается мгновенно и устойчива в водных растворах 15 дней (в неводных — 12 ч). В присутствии комплексона И не мешают определению стократные количества шестивалентных ионов вольфрама, молибдена и урана, четырехвалентных осмия, платины, тория и циркония, трехвалентных алюминия, золота, висмута, железа, лантана и родия, двухвалентных бария, кальция, кобальта, меди, железа, ртути, магния, марганца, никеля, свинца, стронция и цинка, одновалентных калия, лития и натрия, а также анионы — бромид, хлорид, ацетат, карбонат, оксалат, фторид, фосфат, иодид, нитрит, нитрат, сульфид, сульфит и сульфат. Сильно мешают цианид-ионы и ионы четырехвалентного иридия. Результаты, полученные авторами, говорят о том, что предлагаемая система весьма перспективна для фотометрического определения серебра. Недостатком системы является фотохимическая нестойкость реагента [29]. [c.50]

    В своих соединениях платиновые металлы встречаются в различных состояниях окисления. Это особо резко выражено для двух аналогов железа — рутения и осмия, у которых валентность достигает максимального значения (Vni) (стр. 631). Платина и иридий могут быть шестивалентными родий и палладий максимально четырехвалентны. Все элементы этой группы дают прочные комплексные соединения. [c.674]

    Такие восстановители, как 1 , Ре2+, ЫгН4, в присутствии катализаторов— шестивалентного молибдена или носьмивалент-ного осмия отдают электроны иону 02 . Два образовавшихся оксид-иона О мгновенно реагируют с водой, давая гидроксид-ионы, которые в случае кислой среды реагируют дальше с образованием воды. В щелочных растворах пероксид водорода окисляет Мп(0Н)2 и СгОг" до МпОг и СГО42- соответственно. [c.482]


    Невозможностью возбуждения электрона объясняется отсутствие у железа валентности 8, тогда как у его аналогов — рутения и осмия — эта валентность возможна. Кислород проявляет валентность 2, а его аналоги — сера, селен, теллур — могут быть четырех- и шестивалентны. По тем же соображениям гелий и неон обладают нулевой валентностью, а их аналоги — аргон, криптон, ксенон и радон — вследствие возможности возбуждения электронов могут давать соединения, в которых проявляют валентность 2, 4, 6 и 8 (подобные соединения последних трех элементов получены в 1962—1970 гг. в виде оксидов, фторидов, оксфторидов и солей кислот криптона и ксенона). [c.102]

    Получены солеобразные соединения рутения и осмия типа М2ЭО4, в которых Э проявляет валентность +6. Подобные соединения неустойчивы. Однако их химическое поведение весьма различно. Так, производные шестивалентного рутения легко восстанавливаются до НиОг, причем валентность элемента изменяется от +6 до +4. НиОа—наиболее устойчивый окисел рутения. Производные же шестивалентного осмия, напротив, легко окисляются до 0з04— при изменении валентности элемента от +6 до +8. [c.556]

    Валентность характеризует способность атомов элементов к образованию соединений. Ее определяют как число атомов одновалентного элемента, с которым соединяется один атом данного элемента. Так, в соляной кислоте НС1 хлор одновалентен, в воде НаО кислород двухвалентен, в аммиаке NHj азот трехвалентен, в метане СН4 углерод четырехвалентен, в P U фосфор пятивалентен, в SFe сера шестивалентна, в Rep7 рений семивалентен, в OsFg осмий восьмивалентен. [c.107]

    Производные шестивалентных элементов характерны для осмия и рутения. Оба металла при сплавлении их со щелочами в присутствии окислителей образуют соли осмиевой или рутениевой кислоты общей формулы М2ЭО4 по схеме, например  [c.451]

    OsOj, как это легко установить, натрий одновалентен, кальций двухвалентен, железо трехвалентно, углерод четырехвалентен, фосфор пятивалентен, сера шестивалентна, марганец семивалентен, осмий восьмивалентен. Валентность выше 8 не обнаружена. [c.26]

    Джилкрист исследовал также и платиновые металлы, которых мы не включили в эту таблицу. Рутений как четырехвалентный (в виде хлоросоли), так и трехвалентный полностью осаждаются при pH, равном 6,3 из соли четырехвалентного рутения получается лучший осадок. Трехвалентный родий полностью осаждается при полной нейтрализации раствора, образуя хлопьевидный осадок. Двухвалентный палладий осаждается в тех же условиях, хотя быть может не полностью. Из подкисленных растворов, содержащих бромат, полностью осаждаются четырехвалентный родий и четырехвалентный палладий при pH от 6,3 до 8. В тех же условиях осаждается шестивалентный иридий при pH от 4 до 8. Четырехвалентный осмий осаждается полностью при pH от 1,5 до 6,3 наилучший осадок получается при pH, равном 4. Четырехвалентная платина в виде хлоросоли очень медленно гидролизуется при pH, равном 6,3, но осаждение, в конце концов, совершается полностью. Бромат, повидимому, замедляет этот гидролиз. [c.234]

    Валентность атома (элемента) также относится к числу основных понятий химии. Ее определяли как число атомов одновалентного элемента, с которым соединяется один атом данного элемента. Так, в соляной кислоте HQ хлор одновалентен, в воде HjO кислород двухвалентен, в аммиаке NH3 азот трехвалентен, в метане СН4 углерод четырехвалентен, в P I5 фосфор пятивалентен, в SF сера шестивалентна, в ReF, рений семивалентен, в OSO4 осмий восьмивалентен. [c.74]

    Структурное исследование диоксотетрацианпда К4[МоО--(СМ)4] имело особо важное значение. В отличие от диоксо-комплексов шестивалентного молибдена, диоксокомплексы шестивалентного осмия имеют не цис-, а транс-строение в отношении атомов кислорода. Как было отмечено в работах [29] и [30], это отличие определяется появлением неподелен- [c.27]

    Из элементов VIII группы только у двух, а именно рутения (№ 44, Ни) и осмия (№ 76, Оз) высшая валентность по кислороду равна 8 соответственно номеру группы (их высшие окислы — Ни04, 0з04). У всех же остальных высшая валентность по кислороду значительно меньше. Так, высший окисел железа (№ 26, Ре) — РеОд, где железо шестивалентно. Это по существу группа исключений из указанной выше закономерности. [c.50]

    Устойчивость двухвалентного состояния может свидетельствовать об определенных металлических свойствах элемента — необычно низкой плотности и относительно высокой летучести. Как ожидают, элемент 103 может иметь только трехвалентное состояние. Элемент 104 в водных растворах должен быть исключительно четырехпалентным в соответствии со свойствами своего гомолога гафния. Элемент 105 будет напоминать ниобий и тантал и до некоторой степени протактиний пятивалентное состояние для него наиболее устойчивое. Химические свойства элемента 106 могут быть предсказаны, исходя из свойств вольфрама, молибдена и отчасти хрома поэтому у него мож1ю обнаружить трех-, четырех-, пяти- и шестивалентные окислительные состояния. Элементы 107, 108, 109, 110, вероятно, будут иметь химическое сходство с реиием, осмием, иридием и платиной соответственно. [c.83]

    У -переходных металлов можно отметить совершенно аналогичное поведение. Действительно, переходные металлы УП—УП1 групп большей частью не проявляют высших валентных состояний, отвечающих номеру группы. Железо, кобальт и никель имеют высшие валентности 24- и 34-, 34" и 2-f- соответственно. Родий и палладий показывают валентности 34-, 44- и 24-, а иридий и платина — валентности 34-, 44- и 24-, 44-, 64- соответственно. Рутений и осмий, хотя и образуют окислы RUO4 и OSO4, однако более характерными для них являются валентности 44- и 64-. Металлы УП группы — марганец, технеций и рений — имеют валентность 7-f-, но более прочными оказываются соединения двух-и трехвалентного марганца и шестивалентных технеция и рения. Металл VI группы — хром кроме валентности 6- - образует очень прочные соединения в трехвалентном состоянии валентности 34- и 44- характерны для ванадия. В I—V группах высшая валентность соответствует номеру группы и отвечает наиболее прочным соединениям. [c.81]


    На рис. 99 представлено изменение валентных состояний металлов больших периодов в зависимости от их атомного номера. Указаны валентности каждого металла в различных химических соединениях, причем валентности, соответствующие наиболее прочным соединениям, даны зачерненными значками. От I до VI групп высшей валентностью, отвечающей наиболее прочной химической связи, оказывается валентность, соответствующая номеру группы. Только у хрома наряду с шестивалентными соединениями сравнительно прочными оказываются и трехвалентные. В VII группе наибольшая прочность соединений соответствует двухвалентному марганцу, который бывает и одновалентным, однако технеций и рений дают более стабильные четырех-, шести- и семивалентные соединения. В VIII группе у железа, кобальта и никеля наибольшая прочность связи соответствует двух- и трехвалептным соединениям, а у рутения и осмия — четырехвалентным. У родия и иридия наиболее прочны трехвалентные соединения, у никеля, палладия и платины — двухвалентные, а у металлов I группы — меди, серебра и золота — устойчивы одновалентные соединения. Итак, обычные химические валентности у элементов 4-го, 5-го и б-го периодов нарастают от 1+ для калия, рубидия и цезия до 6-(-для хрома, молибдена и вольфрама, а затем падают до 1+ У меди, серебра и золота. Принимая, что эти валентности определяют число электронов, отделяющихся от атомов соответствующих элементов при образовании [c.229]

    N02)21203 -6НзО [671] (рис. 49). Здесь чакже имеются двойные кислородные мостики. Но в этом комплексе шестивалентного осмия диамагнетизм (18-электронное заполнение системы МО) обеспечивается и без взаимодействия металл—металл. В соответствии с этим центральный четырехчленный цикл остается плоским, а расстояние 0з...08 превышает расстояние М0...М0 в рассматриваемых структурах почти на 0,5 А. Отсутствие связи [c.148]


Смотреть страницы где упоминается термин Осмий шестивалентные: [c.58]    [c.196]    [c.17]    [c.17]    [c.457]    [c.635]    [c.213]    [c.220]    [c.411]    [c.202]    [c.161]   
Учебник общей химии 1963 (0) -- [ c.415 ]




ПОИСК





Смотрите так же термины и статьи:

Осмий

Осмий осмий



© 2025 chem21.info Реклама на сайте