Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оксиды преимущественно ионные

    Основные оксиды — твердые при комнатной температуре, как правило, тугоплавкие вещества. Они образуются металлами в невыео чИх степенях окисления (I—П). Химическая связь в таких оксидах преимущественно ионная, в нх структуре нет отдельных молек л. Примеры основных оксидов К2О, СаО, FeO. [c.59]

    Характеристические соединения. Оксид литня Ы О получается непосредственным взаимодействием элемеитов. Он представляет собой бесцветное кристаллическое вещество с преимущественно ионной связью ( пл = 1570°С АЯ , за, =—595,8 кДж/моль). По химической природе ЫаО — основный оксид, а потому при нзaп ra-действин с кислотными оксидами и кислотами образует соли. Так, ЬтаО легко поглощает СО2 с образованием карбоната лития. Термическим разложением карбоната, а также гидроксида и нитрата в токе сухого водорода также можно получить оксид лития. Оксид [c.112]


    Свойства бинарных соединений элементов рассматриваемой группы от углерода к свинцу меняются довольно закономерно Это особенно характерно для соединений без кратных связей типа ЭХ (X — галогены, водород) Почти все они имеют молекулярную структуру, однако устойчивость таких соединений для углерода намного выше, чем для остальных элементов Оксиды и сульфиды углерода резко отличаются по свойствам от аналогичных соединений остальных элементов для первых характерна молекулярная структура, для вторых—атомная (полимерная) структура с переходом к преимущественно ионной у 5п и РЬ [c.222]

    Все металлы ПА-группы с кислородом образуют оксиды состава ЭО. Для бария известен также пероксид ВаОг. Характер химических связей в оксидах различен у оксида бериллия связь главным образом ковалентная, у остальных оксидов преимущественно ионная. Поэтому оксид бериллия обладает амфотерными свойствами, т. 6. он реагирует как с кислотами, так и с основаниями  [c.205]

    При низшей валентности. равной 2 или 3, в бинарных соединениях типа галидов или оксидов проявляется преимущественно ионный тип связи. При валентности 4 и выше соединения частично образованы за счет полярной связи, а главным образом за счет ковалентной связи. [c.431]

    Все характеристические оксиды, как известно, относятся к оснбвным й кислотным. Первые являются оксидами металлов, вторые генетически связаны с неметаллами. Поскольку нет четкой границы между металлами и неметаллами, существует большая группа амфотерных оксидов. Амфотерность определяется не только положением элемента в Периодической системе, но и зависит от его степени окисления. Ориентируясь на разность ОЭО, можно утверждать, что оксиды металлов должны быть преимущественно ионными, а оксиды неметаллов — преимущественно ковалентными. Поскольку для одного и того же элемента с увеличением степени окисления его электроотрицательность растет, то в этом направлении — от низших к высшим оксидам — растет ковалентный вклад. Вследствие этого наблюдается изменение свойств оксидов от основных к кислотным, например ОЭО (Сг2+) = 1,4, ОЭО (СгЗ ) = 1,6, ОЭО (Сгв ) = 2,4, и свойства оксидов закономерно изменяются  [c.267]

    Высокие анодные потенциалы необходимы для генерирования частиц радикального типа из молекул субстрата, растворителя и (или) соответствующих компонентов раствора (например, Р из НР или Р ). Образование таких частиц и их дальнейшие превращения определяются не только собственно высоким значением потенциала электрода, но и структурой поверхностного слоя, включающего в себя оксиды, адсорбированные ионы и органические частицы (см. гл. 3). Синтез продуктов радикальных превращений возможен и при <2,0 В, однако в этих условиях преимущественно протекают реакции деструктивного окисления исходных органических веществ до воды, оксида углерода (IV), оксида углерода (И), формальдегида и т. п. [c.289]


    Связь в оксидах металлов подгруппы кальция преимущественно ионная. [c.263]

    С другой стороны, многие гидриды, оксиды, карбиды и т. п. обладают металлическими свойствами и относятся к металлидам . Следовательно, в этом случае неметаллический компонент не выступает в роли анионообразователя, и приведенная номенклатура становится условной. Фундаментальной характеристикой химического соединения, определяющей все его особенности — структуру, состав и свойства, является доминирующий тип химической связи. Только на этом основании можно осуществить систематику бинарных соединений. По этому признаку все бинарные соединения следует подразделить на 3 типа преимущественно ионные (солеобразные), ковалентные и металлоподобные. Следует также различать координационные ковалентные и молекулярные ковалентные соединения. А преимущественно ионные и металлические бинарные соединения могут быть только координационными в силу ненаправленного и ненасыщенного характера химических связей в них. [c.49]

    Для оксидов металлов с преимущественной ионной связью (координационные решетки) нарушение стехиометрии термодинамически обосновано, так как при этом растет энтропия системы. Нестехио-метричные оксидные фазы могут быть как односторонними (FeO), так и двусторонними (TiO) .  [c.315]

    По характеру химической связи халькогениды (как и оксиды) подразделяются на ионные, ковалентные и металлические. Преимущественно ионным характером обладают лишь халькогениды наиболее активных металлов, подчиняющиеся правилу формальной валентности. Так, все халькогениды щелочных ме галлов и [c.274]

    Он похож на оксиды щелочноземельных металлов он обладает основными свойствами, связь носит преимущественно ионный характер. [c.123]

    Простые соли — соединения типичных металлических элементов с окислительными элементами (оксоидами). Связь между атомами в молекулах простых солей, находящихся в газовом состоянии, преимущественно ионная, по крайней мере для типичных случаев (т. е. для соединений наиболее активных, например щелочных, металлов с активными оксоидами, например галогенами). Простые соли характеризуются кристаллическими решетками ионного типа, а в жидком состоянии — ионной электропроводностью. Несомненно, что к классу простых солей должны быть отнесены оксиды и нитриды активных металлов, поскольку они характеризуются теми же типичными для солей признаками гидриды наиболее активных (например, щелочных) металлов также являются простыми солями, обладая всеми их признаками. Характерной химической функцией простых солей является их способность бьта донорами положительно и отрицательно заряженных элементарных ионов, сочетаниями которых они являются. [c.51]

    Структура неорганических веществ отличается большим многообразием в зависимости от природы и числа частиц, входящих в кристаллическую решетку. При этом частицы одного вида соединяются друг с другом посредством металлической связи (элементы левой части таблицы Д. И. Менделеева), ковалентной связи с образованием полимерного каркаса (элементы середины таблицы), связи частично ионной и частично ковалентной (некоторые элементы П1, IV и V групп таблицы Д. И. Менделеева), ковалентной связи с образованием отдельных молекул и ван-дер-ваальсовых сил между этими молекулами. При наличии в составе соединения частиц двух видов связь между ними может быть ионной или близкой к ней при значительной разности электроотрицательностей между элементами (фториды, хлориды, ряд оксидов) при малой разности электроотрицательностей — преимущественно ковалентной (SO2, СО т. д.), а также связью, сочетающей признаки и ионной, и ковалентной (большинство оксидов, карбиды, нитриды, бо-риды, силициды). При наличии же в составе соединения трех и более элементов картина может быть еще более сложной. Отдельные элементы за счет преимущественно ковалентной связи между ними могут образовать самостоятельные структурные группировки — радикалы типа SO42-, Si04 -, А104 и т. д., остальные же элементы вследствие передачи своих электронов этим радикалам могут связываться с ними посредством преимущественно ионной связи (Na+, Са2+, АР+ и т. д.). Более того, могут возникать группировки в виде цепей, лент, слоев и даже каркасов, имеющих заряды, равномерно локализованные по фрагментам этих группировок, связанных друг с другом через катионы металлов. Б случае же незаряженных структурных единиц, например слоев у некоторых глинистых минералов, связь между слоями является ван-дер-ваальсо-вой, или водородной. [c.25]

    В периодах с -элементов 1ПБ группы начинается заполнение электронами -орбиталей. Свойства элементов 1ПБ группы сущ -ственно отличаются от -элементов середин больших периодоз. В их оксидах и галогенидах связи преимущественно ионные склонность к комплексообразованию с неорганическими лигандами малохарактерна (основными типами являются ацидокомплексы [c.504]

    Очевидно, что при таком подходе выявляются особенности химической связи в образующихся сложных соединениях. Чем резче бинарные соединения отличаются друг от друга по свойствам, тем более вероятно возникновение сильно полярного взаимодействия между структурными фрагментами сложного соединения. Так, взаимодействие основных оксидов с кислотными приводит к образованию солей, основных оксидов с водой — к образованию оснований, а кислотных с водой — кислот. Если же бинарные соединения, из которых можно образовать сложные, различаются по характеру пе сильно, то преимущественно ионное взаимодействие не реализуется ( uFeS2). [c.82]


    Оксиды металлов. Характер химической связи в оксидах металлов тесно связан с их химическим и кристаллохимическим строением. Оксиды с преимущественной ионной связью (например, щелочных и щелочно-земельных металлов) характеризуются координационными структурами с координационным числом кислорода 6 или 8. С ростом степени окисления металлического элемента возрастает ковалентный вклад в химическую связь химическое строение таких оксидов — молекулярное. При этом координационное число металлического элемента возрастает, а координационное число кислорода, наоборот, уменьшается (например, СгОз, МпаО,, ReaO, и OSO4). Для таких оксидов нарушение стехиометрии невозможно. [c.314]

    Систематизируя кис.лородные соединения элементов по доминирующему типу химической связи, можно выделить три основных типа соединений с металлической, преимущественно ионной и ковалентной связью. К характеристическим соединениям относятся только оксиды, подчиняющиеся правилу формальной валентности. В характеристических оксидах доминирующим типом связи являет ся ионно-ковалентная, поэтому их можно подразделить на два типа с преимущественно ионной и преимущественно ковалентной связью. Последние, в свою очередь, по структурному признаку подразделяются на координационные и молекулярные (например, SiO . и СО2). Ионные оксиды всегда имеют координационную структуру. Ионно-ковалентное взаимодействие характерно и для анионоизбыточных кислородных соединений, однако они обладают особыми свойствами и обычно рассматриваются отдельно. Такую же специфическую группу составляют и металлоподобные оксиды. Принимая во внимание зависимость типа кристаллической структуры оксидов от характера химической связи, можно сделать вывод, что в немолекулярных структурах с ковалентной связью координационные числа не должны превышать 4, а в ионных кристаллических решетках реализуются более высокие координационные числа. Так, в кубической структуре Si02 (/i -кристобалит) к.ч (Si) 4, а к.ч. (О) 2 (рис. 130), в структуре Т1О2 (рутил) к.ч. (Ti) [c.266]

    Оксиды металлов. Оксиды с преимущественно ионной связью (например, щелочных и щелочно-земельных металлов) характеризуются координационными структурами с к.ч. (кислорода) 6 или 8. С ростом степени окисления металлического элемента возрастает ковалентный вклад в химическую связь. Химическое строение таких оксидов молекулярное (например, СгОз, МП2О7, НсгО и OsO ). Для таких оксидов нарушение стехиометрии невозможно. Для оксидов металлов с преимущественно ионной связью (координационные решетки) нарушение стехиометрии термодинамически обосновано, так как при этом растет энтропия системы. Нестехиометричные оксидные фазы могут быть как односторонними (FeO), так и двусторонними (TiO). [c.434]

    Для строения галогенидов металлов справедливы два обобщающих положения. Во-первых, фториды отличаются по структуре от других галогенидов данного металла, за исключением случаев молекулярных галогенидов (например, кристаллические ЗЬРз и 5ЬС1з имеют молекулярное строение) и галогенидов щелочных металлов, образующих кристаллы с преимущественно ионным типом связи. Очень часто фторид металла имеет трехмерную каркасную структуру, тогда как хлорид, бромид и йодид образуют кристаллы, состоящие из слоев, а иногда и цепей. (Исключением из этого правила среди галогенидов МХз—МХб являются в основном фториды см. табл. 9.9). Во- зторых, многие фториды изоструктурны оксидам той же сте- [c.85]

    Если одни структуры характерны только для связей определенного типа (например, структура рутила для преимущественно ионных оксидов и фторидов АХг), то другие простые структуры АтХ могут реализоваться при разных типах связи. Например, структура Na l оказывается выгодной не только [c.82]

    Структуры комплексных ионных кристаллов. Термин комплексный ионный кристалл приложим к твердым фазам двух классов. В МдА1г04 или КМ Рз связи между всеми парами соседних атомов преимущественно ионного характера, так что такие кристаллы должны рассматриваться как трехмерные наборы ионов. Анионами являются О , Р" или реже 5 или С1 . Структуры многих из этих комплексных ( смешанных ) оксидов или галогенидов родственны со структурами простых оксидов или галогенидов и выводятся из более простых структур А,, Х упорядоченным или статистическим замещением атомов А ионами различных металлов (см., например, табл. 13.1, разд. 13.2), хотя известны также и структуры, характерные только для комплексных оксидов илп галогенидов. Они описаны в гл. 10 и 13. Во второхм большом классе кристаллов можно различить прочно соединенные группы атомов, внутри которых в определенной степени реализуется обобщение электронов общий заряд группы распределяется по периферическим атомам, Такие комплексные ионы могут быть конечными либо бесконечно простирающимися в одном, двух или трех измерениях. [c.391]

    В предыдущих разд. 3 и 4 простые модели химической связи— электростатическая для ионных соединений и ковалентная для молекулярных соединений — применялись для объяснения физических и химических свойств соединений. В этом разделе рассмотрена связь между структурой и свойствами твердых веществ, как ионных, так и ковалентных. Кристаллические вещества с преимущественно ионными связями, например оксид магния, имеющий структуру Na l, и кристаллические вещества с чисто ковалентными связями, например алмаз с sp -гибридизацией каждого атома углерода (рис. 5.1), оказываются похожими по своим физическим свойствам. Эти кристаллические вещества — плотные, механически прочные, не проводят электрический ток, имеют весьма высокие температуры плавления (для MgO 2852 °С, для алмаза 3550 °С) и нерастворимы в большинстве растворителей. Заметное различие между твердыми веществами этих двух типов состоит в том, что ионные соединения могут растворяться в жидкостях с высокой диэлектрической проницаемостью, например в воде, а полученные растворы, как и расплавы ионных соединений, проводят электрический ток, что не присуще самим твердым веществам с ионной структурой. [c.132]


Смотреть страницы где упоминается термин Оксиды преимущественно ионные: [c.61]    [c.61]    [c.71]    [c.82]    [c.364]    [c.282]    [c.305]    [c.391]    [c.124]    [c.107]    [c.389]    [c.124]    [c.266]    [c.282]    [c.305]   
Неорганическая химия (1989) -- [ c.60 ]




ПОИСК







© 2025 chem21.info Реклама на сайте