Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо шестивалентное

    Для железа валентности 2 и 3 характерны примерно в равной степени. Поэтому в зависимости от условий соединения двухвалентного железа могут выступать в качестве восстановителей, а трехвалентного — в роли окислителей. Соединения шестивалентного железа неустойчивы и являются окислителями. [c.278]

    Использование ионитов в качестве окислителей — восстановителей. Восстановительные свойства некоторых катионитов используются в количественном анализе. Например, сульфоуголь КУ-1 восстанавливает трехвалентное железо, шестивалентный молибден до пятивалентного, бихромат-ионы до ионов трехвалентного хрома..  [c.209]


    Кислотное разложение в присутствии окислителя. Этот способ применяют для определения серы в различных сульфидных минералах, например в пирите Р еЗ,. Навеску пробы разлагают смесью азотной и соляной кислот или азотной кислоты и брома. При этом железо переходит в раствор в виде хлорного илп азотнокислого железа, а сера окисляется до шестивалентной. Так, например, реакцию между пиритом и смесью азотной кислоты с бромом можно выразить уравнением  [c.159]

    Хроматные покрытия наносят на поверхности цинковых, оцинкованных или кадмированных деталей. Применяются они также для защиты от коррозии деталей из магния, меди, алюминия и других металлов. Основным компонентом хро-матных покрытий являются соединения трех- и шестивалентного хрома и хромата металла основы. Тонкие, светлые покрытия состоят преимущественно из соединений трехвалентного хрома, тогда как более толстые слои желтого цвета содержат одновременно соединения трех- и шестивалентного хрома. Процесс хроматирования осуществляется в растворе, содержащем чаще всего хромовый ангидрид, бихромат натрия или калия, небольшие количества серной и азотной кислот, а также активаторы — муравьиную кислоту, хлорное железо, нитрат цинка. [c.129]

    Сточные воды, отходящие из системы водооборота первой стадии дегидрирования, перед сбросом в канализацию подвергают очистке от соединений хрома выделяют простым отстаиванием грубодисперсные примеси, содержащие трехвалентный хром восстанавливают сульфатом закиси железа шестивалентный хром, проводят коагуляцию известью и вторичное отстаивание для осаждения скоагулированных тонкодисперсных примесей, не уловленных в первичных отстойниках, и восстановленных окислов хрома. При такой очистке концентрация хрома в сточных водах снижается с 900 до 0,03 мг/л, что обеспечивает необходимые условия для последующей биологической очистки сточных вод. [c.28]

    Последовательное определение трехвалентного железа, шестивалентного молибдена и четырехвалентного титана выполняют следующим образом [142]. Сначала титруют трехвалентное же- [c.147]

    Висмут восстанавливает кроме железа шестивалентный вольфрам и молибден. Титан не восстанавливается висмутом. Ванадий, как исследовал В. С. Сырокомский, количественно восстанавливается висмутом до трехвалентного, который (в отсутствие фосфорной кислоты) при стоянии раствора легко окисляется кислородом воздуха до четырехвалентного. [c.36]

    Медь и молибден не осаждаются иодатом и определению не мешают. Алюминий мешает, если его количество более чем в 50 раз превосходит количество урана (IV). Определение в присутствии двухвалентного железа приводит к заниженным результатам, по-видимому, вследствие имеющего место частичного окисления его до Fe(III), окисляющего затем четырехвалентный уран до шестивалентного, не осаждающегося в условиях проведения реакции. В присутствии 0,5 л<г Fe (II) ошибка определения достигает 10—15%. [c.64]


    Так, например, при анализе ферромолибдена поступают следующим образом. Сплав переводят в раствор, причем образуются соли трехвалентного железа и шестивалентного молибдена. В одной порции раствора производят восстановление амальгамой висмута, причем оба иона восстанавливаются на одну единицу валентности, т. е. получаются Ре" " и Мо . На титрование этого раствора затрачивается некоторый объем рабочего раствора окислителя (I/,). В другой порции раствора производят восстановление амальгамой цинка (или кадмия), причем получаются Ре и Мо" .  [c.368]

    Сплавлением РегОз с селитрой и щелочью образуются соли кислоты, в которой железо, выступая кислотообразующим элементом, находится в шестивалентном состоянии. [c.80]

    Главным анодным процессом является процесс растворения хрома и железа. Хром в раствор может переходить в виде ионов Сг и Сг +. Шестивалентный хром образует в сернокислом электролите раствор хромового ангидрида, трехвалентный — сульфат хрома Сг2(804)3. Железо переходит в раствор в виде Fea (804)3. На катоде наряду с основным катодным процессом выделения водорода может идти восстановление Сг + до Сг +. [c.108]

    Купферон значительно более эффективен при осаждении катионов других металлов, в частности при анализе руд и сплавов, содержащих некоторые редкие элементы. Купферон широко применяется для осаждения ионов железа, ванадия, циркония, титана, олова, тантала, ниобия, четырехвалентного урана (ионы шестивалентиого урана не осаждаются) и др. Эти ионы осаждаются в сильнокислой среде, что позволяет отделить их от ряда других ионов, не осаждающихся в этих условиях. Таким образом названные выше ионы отделяют от алюминия, бериллия, марганца, никеля, шестивалентного урана, фосфатов и др. Осадки обычно прокаливают и взвешивают в виде окислов. [c.103]

    Как уже было отмечено в гл. 17, железо, кобальт и никель в металлическом состоянии и в сплавах шестивалентны. Столь высокая металлическая валентность обусловливает большую прочность связей, и это определяет ценные свойства сплавов соответствующих металлов — их прочность и твердость. [c.545]

    Двухвалентное железо используют для потенциометрического [547, 592] и амперометрического [457] титрования шестивалентного плутония. [c.73]

    В настоящее время большое распространение получают физико-химические методы очистки сточных вод, благодаря которым в производство возвращают не только очищенную воду, но и ценные металлы. Для очистки сточных вод с общим со-лесодержанием до 2—3 г/л рекомендуют применять в основном метод ионного обмена, который обладает универсальностью и позволяет удалять тяжелые металлы не только в виде катионов, но и анионов. Другим перспективным методом очистки -сточных вод является метод обратного осмоса. Современные высокоселективные обратноосмотические мембраны делают метод весьма эффективным и экономичным. Электрохимический способ наиболее часто применяется для удаления шестивалентного хрома из сточных вод. Способ заключается в восстановлении Сг +—>-Сг + с помощью ионов двухвалентного железа и осаждении Сг(ОН)з. Применяют также электрохимические методы очистки цианидсодержащей сточной воды, заключающийся в окислении цианидов на графитовых анодах, а также извлечения ионов тяжелых металлов (иногда селективно на вращающихся катодах при заданных потенциалах осаждения). Электрохимический способ очистки более экономичен для растворов, содержащих более чем 0,1 г/л металлов. Для очистки сточных вод гальванических производств используют также процессы электрокоагуляции. При этом применяют электролизеры с анодами из низкоуглеродистых сталей, которые растворяются в про- [c.350]

    Присутствие значительных количеств Ре + (при равных соотношениях плутония и железа) может снижать полноту выделения плутония за счет его частичного окисления железом до шестивалентного состояния [519]. [c.255]

    К этой группе методов относится определение урана, основанное на окислении четырехвалентного урана до шестивалентного окис-ным железом с последующим определением двухвалентного железа, образующегося в эквивалентных количествах по отношению [c.140]

    Висмут отделяют от никеля, кобальта, цинка, железа, марганца, урана, титана, трехвалентного и шестивалентного хрома, щелочноземельных и щелочных металлов и ортофосфор-ной кислоты осаждением сероводородом из слабокислого раствора. Перед пропусканием сероводорода прибавляют уксусную кислоту для предотвращения выпадения основной соли, II раствор разбавляют водой. Бихромат восстанавливается сероводородом до трехвалентного хрома с образованием серы. При отделении висмута от ортофосфорной кислоты анализируемое вещество растворяют в соляной кислоте [1107, стр. 121-123, 205, 237, 325]. [c.67]

    Гематоксилин образует с ионами шестивалентного молибдена в слабощелочной среде окрашенное соединение, которое, в отличие от соединений алюминия и железа, не разрушается при последующем осторожном подкислении [309]. Полученные растворы подчиняются закону Бера. Гематоксилин применяли для фотометрического определения 0,3—2 мг мл Мо. [c.52]

    Совместно с шестивалентным молибденом экстрагируются смесью (1 1) ацетилацетона и хлороформа [1061] алюминий, железо, ванадий и титан. Гидратированные ионы трехвалентного хрома ие взаимодействуют с ацетилацетоном и не экстрагируются. Это позволяет отделять молибден, алюминий, железо, ванадий и титан от хрома. Отделение производят при pH водной фазы 2,0. [c.53]


    Из элементов VIII группы только у двух, а именно рутения (№ 44, Ни) и осмия (№ 76, Оз) высшая валентность по кислороду равна 8 соответственно номеру группы (их высшие окислы — Ни04, 0з04). У всех же остальных высшая валентность по кислороду значительно меньше. Так, высший окисел железа (№ 26, Ре) — РеОд, где железо шестивалентно. Это по существу группа исключений из указанной выше закономерности. [c.50]

    Большинство соеди14ений катионов второй аналитической группы бесцветны и мало растворимы в воде. Окрашенными являются хроматы бария, стронция, кальция и висмута (желтые), соединения марганца высшей степени окисления (четырехвалентного — бурые, шестивалентного — зеленые и семивалентного — ф юлетовые), соли железа (III), хрома (III) и хрома (VI), сульфиды железа (И) и железа (III), иодид, сульфид и роданид висмута. [c.36]

    Известны соединения шестивалентного железа, из которых укажем на КаРе04 — феррат калия. Ни соответствующая этой соли железная кислота Н2ре04, ни отвечающий ей железный ангидрид FeOs в свободном виде не получены. Так, при подкислении растворов солей железной кислоты (ферратов) выделяется кислород, причем железо из 4-б-валентного восстанавливается до -4-3-валентного состояния. [c.548]

    Среди методов разделения элементов в различных степенях окисления распределительная хроматография на колонках занимает далеко не последнее место [121]. На колонках с силиконированным силикагелем были разделены двух- и четырехвалентное олово, трех- и пятивалентный мышьяк, трех-, четырех- и шестивалентный плутоний неподвижной фазой в этих опытах по хроматографическому разделению служил трибутилфосфат. Трех- и четырехвалентный церий, а также двух- и трехвалентное железо были разделены на колонках с фторопластом-3 (Kel-F) с применением органических растворителей (в первом случае трибутилфталата, а во втором — триоктилфосфинок-сида). [c.177]

    Окрашенными соединениями являются все соли катионов III аналитической группы, образуемые кислотами с окрашенными анионами все соли трехвалентного хрома — зеленые или фиолетовые, соединения шестивалентного хрома (хроматы) — желтые, бихроматы — оранжевого цвета соли никеля — зеленые кобальта — красные соединения марганца двухвалентного — розовые, четырехвалентного — черно-бурые, шестивалентного (манганаты) — зеленые, семивалентного (перманганаты) — красно-фиолетовые. Ацетат железа (III) — коричневочайного цвета, арсенат железа (III) —зеленый, бромид железа (И) — красный, хлорид железа (111) — коричнево-желтый, гексацианоферрат (II) железа — берлинская лазурь и гексацианоферрат (111) железа — турнбулена синь и роданид кобальта — синие роданид железа (111) — красный. [c.242]

    OsOj, как это легко установить, натрий одновалентен, кальций двухвалентен, железо трехвалентно, углерод четырехвалентен, фосфор пятивалентен, сера шестивалентна, марганец семивалентен, осмий восьмивалентен. Валентность выше 8 не обнаружена. [c.26]

    Ко второй группе относятся элементы, атомы которых проявляют переменную (различную) валентность. Например, углерод в окиси углерода СО двухвалентен, в двуокиси углерода СО четырехвалентен сера в двуокиси серы SO2 четырехвалентна, в трехокиси серы SO3 шестивалентна. Железо в закиси железа FeO двухвалентно, в окиси железа F jOa трехвалентно .  [c.26]

    Коррозионная среда. В зависимости от состава коррозионной среды МКК аустенитных коррозионно-стойких сталей может развиваться с различными скоростями. Одни среды могут вызывать быстрое разрушение границ зерен до полной потери металлом механической прочности и пластичности, другие — более медленное межкристаллитное разрушение. Быстрое разрушение происходит в растворах азотной, серной и фосфорной кислот, смесях азотной и фосфорной кислот, в муравьиной и уксусной кислотах и др. Присутствие в таких растворах некоторых веществ приводит к значительному ускорению МКК- Так, действие сернокислотных рестворов более интенсивно при наличии в них определенных количеств сульфата железа, сульфата меди, роданистого калия или аммония, соединений серебра и двухвалентной ртути, шестивалентного хрома и т. д. Наиболее часто МКК коррозионно-стойких сталей и сплавов наблюдается в кислых растворах. Кислые среды считаются самыми опасными в отношении МКК и используются для выявления у металла склонности к этому виду разрушения по стандартным методикам. [c.59]

    В расплаве гидроокиси натрия при температуре 700°С образуется ЫазРеОз, разлагающийся до окиси железа FeO. При анодной поляризации в щелочной не содержащей кислорода среде при высокой плотности тока образуется соединение шестивалентного железа. (красный феррат). Коррозия железа в щелочных растворах, содержащих кислород, идет с кислородной поляризацией, т. е. с участием растворенного кислорода. [c.78]

    Феррохромлигносульфонаты могут быть получены следующим образом Сахар удаляют путем ферментации жидкости, образующейся при сульфировании бисульфитом кальция. Содержание твердой фазы повыщают примерно до 50 % путем испарения воды. Для повышения pH до 8 в промежуточный продукт добавляют гидроксид натрия и раствор вываривают в течение 8 ч при температуре 90 °С, С целью осаждения сульфата кальция в раствор вводят сульфат железа, затем осадок удаляют центрифугированием. Для окисления производных лигнина в раствор добавляют бихромат натрия и раствору дают отстояться для восстановления шестивалентного хрома до трехвалентного. Конечный продукт получают путем сушки распылением. [c.489]

    Метод очистки сточных вод от веществ, содержащих шестивалентный хром, основан на восстановлении его до трехвалентного с последующим осаждением в виде гидроксида в щелочной среде. В качестве восстановителей могут быть использованы активный уголь, сульфат железа (закисного), биосульфат натрия, водород, диоксид серы, отходы органических веществ (например, газетная бумага), шфитный огарок и др. На практике для восстановления наиболее часто используют растворы гидросульфита (бисульфита) натрия  [c.70]

    В. В. Фомин, С. П. Воробьев и др. (1951 г.) применили титрование перманганатом для определения плутония в присутствии урана и железа. Раствор плутония в серной кислоте, содержащий железо и уран, предварительно восстанавливали при на Лре-вании сернистым газом, затем удаляли 502 пропусканием инертного газа и титровали сначала при комнатной температуре, а затем при 70° С. На первой стадии плутоний окисляется до че тырехвалентного, железо до трехвалентного и уран до шестивалентного состояния. На второй стадии титруется лишь плутоний до шестивалентного состояния. При титровании 13—14 мг плутония 0,04 N раствором КМПО4 в присутствии двукратного количества урана или половинного количества железа среднее отклонение составило—1,5%. При увеличении количеств урана и железа до соотношения О Ри = 3 и Ре Ри = 1 ошибки увеличиваются до—5%. [c.195]

    И. В. Моисеев, Н. Н. Огнищева и Т. И. Гудкова (1951 г.) предложили для объемного определения плутония в присутствии железа и урана окислять плутоний до шестивалентного висмутатом натрия или двуокисью свинца. Окисление висмутатом натрия в азотнокислом растворе количественно происходит на холоду, а в сернокислом растворе только при назревании. Двуокись свинца окисляет плутоний в сфнокислом кипящем растворе. Полученный раствор плутония(VI) после фильтрования от избытка окислителя воостанавливали раствором двухвалентного железа, избыток которого титровали перманганатом или бихроматом калия. [c.200]

    Наиболее интересным методом среди методов окислительно-восстановительного титрования плутония по достигнутой точно-сти и малому влиянию многих примесей является метод Вотербери и Метца [717], о котором несколько раньше упоминал Метц [547]. Метод основан на количественном окислении плутония до шестивалентного выпариванием с хлорной кислотой и восстановлении Ри(У1) до Ри(1У) малым избытком стандартного раствора двухвалентного железа, который затем оттитровывается прн помощи автотитратора раствором церия(IV). Для образцов высокочистого металла получено среднее содержание плутония 99,98% со стандартным отклонением 0,02% в 11 определениях. Для анализа брали 3—5 г раствора плутония с концентрацией около 60 мг г раствора. Найденное значение совпадало с содержанием плутония в металле, полученным путем определения примесей спектральным методом и высоковакуумной плавкой металла.  [c.201]

    Выделение плутония данным методом можно проводить в присутствии больших количеств железа поэтому для восстановления шестивалентного плутония применяют Fe(II), которое легко отделяется при осаждении Pu(IV) [92] из разбавленной азотной кислоты. Осаждению плутония на фосфате висмута не мешают большие количества кальция. Это позволяет выделять ультрамалые количества плутония из костей животных (А. А. Чайхорский и Н. Ф. Лапшина, 1953 г.). [c.273]

    Бове, Стивенсон и Роллефсон [24] предложили метод отделения плутония от урана и продуктов деления соосаждением четырехвалентного плутония с гидроокисью железа из ацетатных растворов с pH 5—6. Совместно с плутонием в осадок увлекаются цирконий и ниобий. Для их отделения проводят осаждение гидроокиси железа из окислительной среды. На этой операции шестивалентный плутоний остается в растворе. [c.279]

    Лери с сотр. [519] показал, что присутствие в растворе равных с плутонием количеств железа приводит к неполному осаждению Pu(IV) за счет его окисления Fe(III) до шестивалентного состояния (только в присутствии Н2О2). Однако железо, а также медь, марганец и др. катализируют процесс разложения Н2О2 н поэтому должны присутствовать в незначительных количествах. Добавление гидроксиламина или гидразина к раствору перед осаждением плутония улучшает его количественное выделение [290]. [c.291]

    Фтористоводородная кислота осаждает Ри(1У) из кислых растворов в виде Рир4-2,5Н20. Этим методом можно отделить плутоний от шестивалентного урана, железа, циркония, тантала и других элементов, образующих с фтор-ионом растворимые комплексные соединения. Метод не нашел широкого примене- [c.294]

    В. М, Звенигородская и Л. П. Рудина [157, 184] использовали трудную растворимость тетрафторида урана для определения общего содержания урана. Предложенный ими метод основан на предварительном восстановлении шестивалентного урана до четырехвалентного солями двухвалентного железа в присутствии значительного избытка плавиковой кислоты. Так как образующиеся в результате реакции ионы трехвалентного железа связываются в прочный растворимый комплексный анион [РеРе ], а четырехвалентный уран выпадает в осадок в виде нерастворимого тетрафторида, то восстановление шестивалентного урана очень быстро завершается полностью. Разработанный метод, получивший название фторидного, нашел применение главным образом для отделения урана от мешающих элементов и последующего его определения другими методами, В связи с этим подробное описание метода приводится в разделе Методы отделения . [c.65]

    Изучено [338] отделение цинка от ряда элементов при помощи анионного обмена. 5—50 мг цинка в 2 н. НС1 полностью адсорбируются на 15-сантиметровой колонке, содержащей 3 з сильноосиовного анионита амберлит IPiA-400 (в С1-форме). При последующем пропускании 50 мл 2 н. НС1 практически весь алюминий, магний, медь, кобальт, никель, марганец, хром, трехвалентное железо, торий, цирконий, четырехвалентный титан,шестивалентный уран, бериллий и кальций находятся в элюате. Кадмий, четырехвалентное олово, трехвалентная сурьма и висмут ведут себя подобно цинку. Удерживается некоторое количество свинца и индия. Цинк, кадмий и индий элюируются водой и 0,25 н. азотной кислотой, которая также удаляет 20% олова и некоторое количество сурьмы, висмута и свинца. Если применять только воду, то на колонке упорно удерживается небольшое количество цинка. Описаны методы выделения цинка из растворов, свободных от индия и кадмия. [c.86]

    Пирокатехин-3,5-дисульфокислота представляет недостаточно селективный реагент на шестивалентный молибден [1539], поэтому последний нужно отделять осаждением а-бензоиноксимом. Сарма [1299] рекомендует восстанавливать трехвалентное железо дитионатом НгЗгОе или аскорбиновой кислотой. Шестивалентный хром восстанавливают сернистым газом, подкисленной перекисью водорода или аскорбиновой кислотой. [c.42]

    Разработан спектрофотометрический метод быстрого определения молибдена в двуокиси тория, содержащей уран и продукты коррозии (железо, никель, хром), в растворах сульфата ура-нила и в сталях (стр. 235). Метод основан на экстракции шестивалентного молибдена раствором а-бензоиноксима в хлороформе, добавлении к полученному экстракту раствора кверцетина в этаноле и измерении оптической плотности образовавшегося кверцетинового комплекса молибдена при 420 ммк. Метод высоко селективен, мешают только вольфрамат и ванадат [744]. [c.52]


Смотреть страницы где упоминается термин Железо шестивалентное: [c.139]    [c.152]    [c.313]    [c.267]    [c.449]    [c.911]    [c.350]    [c.24]   
Учебник общей химии (1981) -- [ c.449 ]

Учебник общей химии 1963 (0) -- [ c.411 ]

Основы общей химии Том 3 (1970) -- [ c.119 ]




ПОИСК







© 2025 chem21.info Реклама на сайте