Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород трехвалентный

    В молекуле оксида углерода (И) СО, как это показано на с. 80, углерод и кислород трехвалентны, т. е. С О. [c.109]

    Монооксид углерода представляет собой пример химического соединения, когда валентность элементов превышает число неспаренных электронов. Углерод и кислород трехвалентны, хотя атомы этих элементов имеют по два неспаренных электрона. Не следует думать, что монооксид углерода — исключение. Наоборот, подавляюш,ее большинство неорганических соединений образуется или на основе донорно-акцепторного механизма ковалентной связи, или одновременно сочетает в себе обменный и донорно-акцепторный механизмы. Рассмотрим сульфид цинка, кристаллохимическое строение которого показано на рис. 4. Каждый атом цинка связан с четырьмя атомами серы, и, наоборот, каждый атом серы — с четырьмя атомами цинка. Поэтому атомы цинка и серы проявляют одинаковую валент ность, равную четырем. Между тем атом цинка в нормальном состоянии не имеет ни одного неспаренного электрона, а атом серы характеризуется двумя одиночными электронами. При возбуждении атома цинка происходит промотирование 45-электрона на 4р-уровень и появляются два неспаренных электрона  [c.73]


    Окисление кислородом воздуха применяется для легкоокисляе-мых соединений, например сульфитов, гипосульфитов, гидросульфитов, сульфидов, этилмеркаптана, гидразингидрата. При температуре 60—120°С, давлении 0,1—0,8 МПа и расходе воздуха 80—150 м /мз стоков эффективность очистки сточных вод от сульфидов достигает 90—95 %. Кислород воздуха применяют при очистке сточных вод от железа, окисляя двухвалентное железо в трехвалентное с последующим отделением от воды гидроксида железа. Процессы окисления воздухом значительно интенсифицируются в присутствии катализаторов. [c.493]

    В представленной схеме центральное место занимает супероксидный анион-радикал О . Его спонтанная дисмутация приводит к появлению перекиси водорода и, по некоторым данным, синглетного кислорода. При взаимодействии перекиси водорода с супероксидным анион-радикалом (реакция Хабера—Вайса) образуется гидроксильный радикал НО и, возможно, синглетный кислород. Трехвалентное железо или другой окисленный ион переменной валентности могут быть восстановлены перекисью водорода или супероксидным анион-радикалом. Гемолитический распад перекиси водорода при ее взаимодействии с двухвалентным железом (реакция Фентон) дает гидроксильный радикал НО.  [c.63]

    Вместе с тем необходимо подчеркнуть, что энергетически выгодное распаривание электронов происходит лишь в пределах одного энергетического уровня. Поэтому получение, например, четырехвалентного кислорода, трехвалентного лития, двухвалентного гелия практически невозможно, так как затрата энергии при переходах [c.43]

    Чтобы таким же образом получить, например, четырехвалентный кислород, трехвалентный литий, двухвалентный неон, необходима очень большая затрата энергии аЕ, связанная с переходом 2р -> Зв (кислород), 1в -> 2р (литий), 2р -> Зв (неон). В этом случае затрата энергии настолько велика, что не может быть компенсирована энергией, выделяющейся при образовании химических связей. Поэтому и не существует соединений с переменной валентностью кислорода, лития или неона. [c.45]

    Кекуле в 1857 г., сопоставляя приведенные выше типы, приходит к выводу о двухвалентности кислорода, трехвалентного азота и фос- фора и, что особенно было важно, четырехвалентности углерода. Валентность понималась им и его последователями как число единиц сродства , способных взаимно насыщаться при соединении . Отсюда, во-первых, сразу возникает понятие о межатомной, или химической , связи, а во-вторых, Кекуле впервые (1858) удается объяснить закономерности в составе органических соединений, в первую очередь объяснить, почему насыщенные углеводороды имеют общую формулу С Н2 +2- [c.28]


    Для этих реакций имеется очень мало количественных данных. Для реакций присоединения к элементам первого ряда периодической таблицы (от С до F) энергии активации, как можно ожидать, будут довольно высокими, потому что в этом случае число электронов, окружающих атом, превышает их число на заполненной валентной оболочке (т. е. углерод при этом должен стать пятивалентным, кислород — трехвалентным и т. д.), что энергетически крайне невыгодно. С этой точки зрения можно ожидать, что у соединений бора реакции этого типа будут протекать с низкой энергией активации, что в действительности и наблюдается. [c.161]

    В солянокислой среде определению свинца мешают растворенный кислород, трехвалентное железо, большие количества меди, мышьяк, сурьма, висмут, олово и таллий. [c.66]

    Огромный опытный материал показывает (см. табл. 17 и обзоры [10, 32, 28], а также дополнение 3 на стр. 407), что водород в связи с кислородом, трехвалентным азотом, двухвалентной серой и галогенами обменивается на дейтерий из воды или из спирта очень быстро, независимо от строения, температуры и присутствия катализаторов (см. дополнение 4 на стр. 407). Водород в связи с углеродом, напротив, обменивается с трудом или вовсе не обменивается, и скорость реакции сильно зависит от особенностей строения, температуры и наличия катализаторов .  [c.228]

    Существуют технологические приемы — комбинация перечисленных. Для извлечения из природных газов сероорганических соединений возможно использовать следующие окислители озон, кислород, трехвалентный кобальт, кислородные соединения хлора, гипохлорид, хлорат, иод, перекись водорода, соли трехвалентного марганца, кобальта, железа, перманганаты и т. д. Перечень окислителей, которые можно использовать для очистки газа от сернистых соединений, достаточно широк и, безусловно, будет увеличиваться. [c.240]

    Реактив образует труднорастворимое соединение с трехвалентным кобальтом. При реакции двухвалентный кобальт окисляется до трехвалентного частично кислородом воздуха, частично — самим реактивом. Образующийся трехвалентный кобальт замещает ионы водорода в гидроксильных (фенольных) группах трех молекул реактива и координационно связывается с нитрозогруппами. Осадок, окрашенный в интенсивно красный цвет, имеет следующий состав  [c.101]

    Во всех примерах, кроме примера с ионом трехвалентного железа, обращает на себя внимание тот факт, что активные промежуточные продукты содержат четное количество избыточных по сравнению с катализатором атомов кислорода, а неактивные — нечетное (один). Это объясняется тем, что промежуточный продукт, обладающий одним избыточным атомом, может разложиться только по бимолекулярному механизму, например [c.283]

    Шпинелями называются такие окислы, в структуре которых атомы кислорода образуют плотную кубическую решетку с октаэдрическими пустотами, в которых расположены ионы двух- и трехвалентных металлов. Обратная пши-нель имеет структуру МеЗ+ [Ме2+ МеЗ+] О4. [c.27]

    Барботируя через слой абсорбента, кислый газ очищается от сероводорода, который окисляется до элементной серы трехвалентным железом, при этом железо переходит в двухвалентное состояние. Для регенерации абсорбента в абсорбер компрессором (или воздуходувкой) 2 подается воздух III. Кислород воздуха окисляет железо вновь до трехвалентного состояния. Остатки кислого газа и отработанный воздух II направляются на свечу рассеивания или термическое обезвреживание. Элементная сера укрупняется, оседает на дно установки и периодически вместе с частью абсорбента выводится из абсорбера на фильтр 3, где сера IV отделяется и направляется на дальнейшую переработку. При переплавке острым паром можно получить жидкую серу. Отфильтрованный абсорбент поступает в емкость 4, которая служит для приготовления и хранения абсорбента. Необходимое количество абсорбента насосом 5 возвращается в абсорбер. [c.138]

    Сооружение восстановителя-десорбера на пути катализатора из регенератора в реактор, в целях десорбирования кислорода, углекислого и угарного газов, уносимых из регенератора катализатором, а также восстановления шестивалентного хрома, содержащегося в катализаторе, в трехвалентный. [c.239]

    В табл. 5 приведены экспериментально найденные валентные углы для некоторых соединений, в которых центральный атом принадлежит элементу, находящемуся в двух- или трехвалентном состоянии (атомы кислорода, серы, азота). Эти данные могут иллюстрировать сказанное выше. Для сероводорода, у которого связи Н—8 очень слабо полярны, угол между направлениями связей (а) равен 92°33, а для воды, вследствие значительной полярности связи Н—О, под действием взаимного [c.73]

    Регенерированный катализатор проходит десорбер (на схеме не показан), где продувается бутаном для удаления адсорбированного кислорода и дополнительного восстановления шестивалентного хрома в трехвалентный. Для этих целей расходуют от 3 до 5% подаваемого на процесс бутана бутан из десорбера используют как топливо, подаваемое на сжигание в регенератор. Физическое тепло отходящих из регенератора газов используют в котле-утилизаторе 5 для получения водяного пара. Катализаторная пыль, увлекаемая газами из регенератора, увлажняется в аннарате 4 и оседает в электрофильтре 3. [c.222]


    Очень интересны кобальтовые катализаторы. Если использовать соли двухвалентного кобальта, то наблюдается индукционный период, который, вероятно, связан с окислением кислородом двухвалентного кобальта в трехвалентный. Применяя трехвалентный кобальт в уксусной кислоте, можно окислить алкилароматические углеводороды, не вводя кислород. Вероятно, в действительности двухвалентный кобальт ингибирует эту реакцию /23/. В качестве активаторов используют Вг /41/, ацетальдегид /31/ или метилэтилкетон /15/. Предполагается, что они способны регенерироваться источниками свободных радикалов, инициирующих цепь. [c.290]

    При замещении имидазольной группы на молекулу пиридина соединение перестает связывать кислород, а железо в нем не окисляется до трехвалентного состояния. Основность имидазольного кольца и его расположение относительно Ре (II) в составе гема приводят к уникальной способности связывать кислород. Это модельное соединение связывает СО гораздо сильнее, чем О2. [c.363]

    Таким образом, можно предположить, что движущей силой всех рассмотренных реакций с участием хлорида кобальта является способность кобальта(И) временно окисляться до трехвалентного состояния под влиянием атома кислорода карбонильной группы ила атома галогена некоторых алкилгалогенидов. [c.306]

    Для переведения Ре" в Ре + к раствору соли трехвалентного железа приливают избыток раствора соли двухвалентного хрома. Затем раствор взбалтывают в течение 3—5 мин. или оставляют стоять 10—15 мин. при этом двухвалентный хром полностью окисляется кислородом воздуха, в то время как двухвалентное железо в сильнокислом растворе по отношению к кислороду достаточно устойчиво. После окисления двухвалентного хрома двухвалентное железо титруют тем или другим окислителем. [c.367]

    Несмотря на значительно меньшую концентрацию енольной формы (на 5— 7 порядков), чем кетонной, она окисляется легко, и, видимо, через енольную форму идет в основном окисление кетонов ионами переменной валентности. При изучении окисления метилэтилкетона комплексами марганца меди и железа в водных растворах было отмечено, что скорость енолизации намного выше скорости окисления кетона [310]. Однако нельзя исключить возможность окисления кетонной формы через предварительное вхождение в координационную сферу металла карбонильного кислорода [306], В углеводородном растворе окислению предшествует комплексообразование, что доказано на примере окисления циклогексанона стеаратом трехвалентного кобальта [309] [c.196]

    В ряде других случаев получаются соединения определенной валентности, однако они очень легко окисляются кислородом воздуха. Чтобы избежать этого, колбу, в которую собирают раствор после восстановления, наполняют углекислым газом. Иногда раствор, вытекающий из редуктора, собирают в коническую колбу, содержащую 10—15 мл 20%-ного раствора железных квасцов. Восстановленный до низшей степени окисления элемент тотчас реагирует с ионами трехвалентного л<елеза, например  [c.370]

    Применение уксусной кислоты не обязательно во многих прописях рекомендуется брать серную кислоту. Однако при недостаточном опыте работающего при этом иногда создается слишком высокая кислотность, в связи с чем может выделиться йод. Это объясняется действием пятивалентного мышьяка, а также трехвалентного железа, так как фторидный комплекс последнего разрушается сильными кислотами. Отсюда требование ГОСТа — применять именно уксусную кислоту. Возможно также каталитическое действие меди, и особенно окислов азота на реакцию между йодидом и кислородом воздуха. Поэтому следует обратить особое внимание на указанные в тексте предосторожности в отношении удаления азотной кислоты и окислов азота, а также, по возможности, на устранение соприкосновения с кислородом воздуха после прибавления йодистого калия. [c.414]

    Свободный гем легко окисляется на воздухе, превращаясь в гемин, железо которого трехвалентно. Соединяясь же с глобином, гем становится более устойчивым к окислению и, реагируя с кислородом, образует оксигемоглобин, в котором железо сохраняет двухвалентную форму. Этим объясняется и довольно легкое отщепление кислорода, присоединенного к гемоглобину. [c.144]

    Халькозин и ковеллин в кислом растворе могут окисляться вместо кислорода трехвалентным л<елезом. Показано, что в этих условиях халькозин реагирует следующим образом (Sullivan, 1930)  [c.451]

    Пиролюзит ный метод. Основан па окислении диоксида серы кислородом в жидкой фазе в присутствии катализатора — пиролюзита (основа катализатора — оксид марганца). При наличии кислорода двухвалентный марганец окисляется до трехвалентного. При этом одновременно окисляется диоксид серы 4Л1п2+- - 302 — 2МпаОз  [c.60]

    Образующиеся ионы трехвалентного марганца далее участвуют в окислении диоксида серы с помощью кислорода, растворенного в кислоте. Схема этого процесса почти ие отличается от схемы пиролюзитного. Преимущество метода — более высокая концентрация серной кислоты (до 60%). [c.61]

    Особо следует остановиться на предельно допустимых концентрациях примесей титана в каучуках. Этот вопрос имеет большое практическое значение, так как большинство катализаторов стереоспецифической полимеризации содержат в своем составе трехвалентный титан. Известно, что окисление трехвалентного титана проходит через стадию образования свободных радикалов. При окислении трехвалентного титана кислородом наблюдается деструкция полибутадиена и полиизопрена [43]. В этой же работе было показано, что многие антиоксиданты, применяемые для стабилизации каучуков, не оказывают ингибирующего действия на процесс деструкции, вызываемый окислением трехвалентного титана кислородом. В этом случае ингибиторами являются такие соединения, как нитробензол, азобензол, бензохинон (которые, как известно, окисляют трехвалентный титан в четырехвалентный) или дифенилпикрилгидрозил, образующий с треххлористым титаном нерастворимый комплекс, выпадаюп1,ип в осадок. Совокупность данных по влиянию титана на стабильность полибутадиена и полиизопрена позволяет считать, что предельно допустимая концентрация этого металла лежит близко к 0,01% (масс.). Для каучуков, имеющих в основной цепи полярные заместители (например, для нитрильных каучуков) предельно допустимые концентрации примесей металлов переменной валентности могут быть несколько более высокими (это не относится к примеси железа). [c.632]

    Литий — одновалентный металл, энергично разлагающий воду с образованием щелочи. За литием идет бериллий — тоже металл, но двухвалентный, медленно разлагающий воду при обычной температуре. После бериллия стоит бор — трехвалентный элемент со слабо выраженными неметаллическими свойствами, проявляющий однако 1и которые свойства металла. Следующее место в ряду занимает углерод — четырсхвалентный неметалл. Далее идут азот — элемент с довольно ])езко выраженными свойствами неметалла кислород — типичный неметалл наконец, седьмой элемент с1)тор — самый активный из неметаллов, принадлежащий к группе галогенов. [c.48]

    В качестве абсорбента применяются водный (зимой водногликолевый) раствор комплекса железа и этилеидиаминтетрауксусной кислоты раствор поддерживается слабощелочным за счет добавления карбоната и фосфата щелочного металла. В процессе абсорбции сероводород окисляется до элементной серы трехвалентным железом, которое переходит в двухвалентное. Регенерация абсорбента осуществляется продувкой его воздухом, в результате кислород окисляет двухвалентное железо до трехвалентного. [c.142]

    Опасения повышенной коррозии, которые обычно вызывает применение хлорного железа при гидрогенолизе, являются преувеличенными. Как указывает Тодт, коррозия в любом случае происходит только в растворах, действующих как окислители [58, т. И, с. 20, 48], а растворы моносахаридов являются восстанавливающими. Тодт также замечает [58, т. I, с. 93], что ионы трехвалентного железа, присутствующие в растворе, пассивируют легированные стали, и содержание кислорода в растворе при этом не столь важно действие пассивации основано на адсорбции. Впрочем, после смешения сырья с водородом в присутствии никелевого катализатора из раствора должны исчезнуть (прогидрироваться) содержащиеся в нем следы кислорода. Известно, что в обычных условиях слабые растворы хлорного железа вызывают сильную коррозию никеля [58, т. I, с. 390], однако никелевый катализатор успешно проводит гидрогенолиз в присутствии хлорного [c.123]

    Одностадийное окисление циклогексана в адипиновую кислоту по методу фирмы Asahi (Япония) осуществляется кислородом воздуха при низкой температуре в присутствии каталитических количеств ацетата или ацетилацетоната трехвалентного кобальта в растворе уксусной кислоты, В качестве промотора в зону окисления добавляется некоторое количество ацетальдегида. Процесс отличается от всех известных тем, что степень превращения циклогексана в этих условиях составляет 88% за проход. [c.189]

    Стенки окон и полостей в цеолитах образуются из правильно расположенных тетраэдров двуокиси кремния и окиси алюминия. Это является основным отличием цеолитов от аморфного алюмосиликата. Атомы кислорода расположены в их вершинах, атом кремния связан одной валентной связью с каждым из четырех атомов кислорода. Поэтому четырехвалентный кремний в тетраэдре оказывается электртеаш нейтральным. Тетраэдр, содержащий трехвалентный, алюминий, обладает одним отрицательным зарядом, так как валентность одного нз атомов кислорода из четырех не насыщается. В натриевой форме цеолита [c.53]

    Результаты упомянутых исследований показывают, что окисление протекает за счет диффузии ионов кислорода через поверхность раздела металл—оксид (решетку с анионными дефектами). На основании этого было сделано предположение, что трехвалентные ионы азота, присутствующие в решетке 2гОг, увеличивают концентрацию анионных дефектов и ускоряют, благодаря этому, движение ионов кислорода. Однако при таком механизме окисление непременно ускорялось бы в атмосфере кислорода, а это не так. Толкование этих процессов осложняется к тому же [c.380]

    При длительном хранении эфир окисляется кислородом воздуха и тогда содержит вещества перекисного характера. В этом можно легко убедиться, добавляя к раствору чистой соли двухвалентного железа и роданида калия небольшое количество сохранявшегося долгое время эфира. Содержащиеся в последнем перекиси окисляют двухвалентное железо до трехвалентного, реагирующего с К5СЫ с образованием соли Ре(5СН)з красного цвета свежеперегнанный эфир и эфнр, хранившийся над натрием, не дают этой реакции. [c.152]

    Вне организма гемоглобин быстро превращается в метгемогло-б и н, который отличается от оксигемоглобина более прочной связью с кислородом и при расщеплении образует наряду с глобином г е м а-т и н у последнего при атоме железа имеется одна гидроксильная группа. В гемоглобине железо двухвалентно, в метгемоглобине и тематике — трехвалентно. [c.974]

    При восстановлении до низших степеней валентности следует иметь в виду действие кислорода воздуха. Закисное железо, пятивалентный молибден, четырехвалентные ванадий и уран довольно устойчивы на воздухе. В этих случаях можно не принимать мер для предотвраш,ения действия воздуха. При восстановлении урана цинком или кадмием частично образуется трехвалентный уран при встряхивании на воздухе последний превращается в четырехвалентный уран таким образом, доступ воздуха здесь даже необходим. [c.370]

    Поэтому в электролите постоянного состава для каждой температуры существует определенный минимум плотности тока, ниже которого осаждения хрома не происходит. Для хро-мпрования применяют достаточно высокие плотности тока—в интервале 1— 10 кA/м , что приводит к повышению напряжения на электролизере до 12 В и выделению значительного количества джоулевой теплоты. Выход по току хрома растет с повышением плотности тока. Поэтому электролиты хромирования. чмо.ют плохую рассеивающую способность. Это связано также с тем, что катодная поляризация мало изменяется с плотностью тока. Для хромирования применяют нерастворимые аноды из свинца или сго сплавов с оловом (10%) или сурьмой (6%), на которых протекают процессы выделения кислорода и окисления трехвалентного хрома до шестпиалентного. [c.46]

    Упрощенная аэрация осуществляется при высоте излива 0,5— 0,6 м над уровнем воды в фильтре. Ее рационально применять при содержании общего железа до 10 мг/л, в том числе закисного должно быть не менее 70%, так как в его отсутствие пленка на загрузке не образуется. Процессу обезжелезивания этим методом мешают сероводород и углекислота, низкое значение pH, высокая окисляе-мо сть. Содержание кислорода должно быть оптимальным (для некоторых вод около 0,6 мг/л), так как излишек и недостаток его в воде ухудшают процесс обезжелезивания. При содержании в воде свободной углекислоты выше 50 мг/л железистая пленка на зернах загрузки не образуется, потому что все закисное железо будет находиться в виде растворимой соли Ре (НСОз) 2- Наличие в воде НгЗ связывает растворенный в воде кислород, что также не способствует образованию пленки. При низком значении pH происходит быстрое окисление двухвалентного железа в трехвалентное. [c.205]


Смотреть страницы где упоминается термин Кислород трехвалентный: [c.191]    [c.156]    [c.298]    [c.120]    [c.305]    [c.372]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.244 , c.250 ]

Курс теоретических основ органической химии (1959) -- [ c.224 , c.230 ]




ПОИСК







© 2025 chem21.info Реклама на сайте