Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая связь механизмы образования

    Однако удобнее органические реакции классифицировать по их механизмам. Под механизмом химической реакции понимают путь, который приводит к разрыву старой химической связи и образованию новой. Чтобы установить, как протекает этот процесс, необходимо представить все последовательные состояния, через которые проходит система реагирующая молекула — реагент . При этом необходимо учитывать не только образование конечных продуктов реакции, но и промежуточных, а также влияние изменения условий на протекание реакции. Рассмотрим наиболее простой случай химической реакции — реакцию замещения. Эта реакция сопровождается разрывом ординарных связей (сг-связей) и образованием новых с заменой одной атомной группировки на другую. В зависимости от характера атакующего реагента и природы связей в реагирующей молекуле разрыв а-связи может протекать по двум основным механизмам  [c.24]


    Приведенное определение необходимо дополнить в случае образования химической связи по донорно-акцепторному механизму каждая электронная пара донора отождествляется с одним неспаренным электроном. [c.43]

    Превращение молекул, если не вдаваться в детальный механизм реакции, связано с перераспределением химических связей. Одни связи в молекулах в ходе реакции разрываются, а другие образуются. На разрущении связей энергия затрачивается, а при образовании новых энергия выделяется. Энергия, которую необходимо затратить на разрыв связей в молекуле на отдельные атомы (или атом и группу атомов) и на удаление этих частей на расстояние, где их взаимодействие равно нулю, называется энергией связи. Ее можно рассчитать по закону Гесса. Так, для расчета энергии связей в молекуле воды [c.70]

    Точно установленный состав этого соединения никак ие мог быть объяснен с точки зрения обычных представлений о валентности азота, хлора и водорода. Были известны и другие более сложные соединения, для установления природы которых первоначальное понятие о валентности оказалось явно недостаточным. Альфред Вернер (1866—1919) в 1891 г. для случаев, когда к молекулам соедииений, в которых валентность элементов была полностью насыщена, присоединялись другие молекулы, предложил понятие побочной валентности. Вслед за этим (1893) Вернер разработал координационную теорию для объяснения природы этих молекулярных соединений, которые в дальнейшем были названы комплексными соединениями. В настоящее время механизм образования химических связей в комплексных соединениях вскрыт на основе электронных представлений. Рассмотрим этот механизм на примере образования соединения аммиака с хлороводородом. [c.65]

    Поскольку в расплавах, в двухфазных гетерогенных системах транспорт реагирующих молекул осуществляется посредством диффузии, то на основе закона Фика, используя уравнение Стока-Эйнштейна, учитывая механизм диффузии в жидкости и расплавах, рассчитав деформацию химической связи при образовании активированного комплекса и вязкость реакционной массы, были рассчитаны скорости транспорта реагентов при различных температурах по формуле  [c.12]

    Радиоактивные индикаторы ныне успешно применяются во многих областях органической химии. К ним относятся изучение механизма химических реакций (идентификация места разрыва и образования химических связей возможности образования промежуточных продуктов реакции разветвление пути реакции изучение внутри- и межмолекулярных перегруппировок и перестроек) изучение прочности связей и сравнительной подвижности атомов в органической молекуле определение строения и структуры соединений анализ органических веществ и смесей. [c.232]


    По-видимому, механизм образования молекул из атомов других элементов, содержащих по 5 -электрону, не будет отличаться от механизма образования молекулы водорода. Например, атомные орбитали атомов натрия (Зз ), перекрываясь друг с другом, приводят к возникновению химической связи и образованию молекулы Na2  [c.105]

    Адгезия относится к поверхностным явлениям в отличие от когезии, которая обусловлена силами притяжения однородных молекул, действующих в объеме материала. В связи с этим важное значение имеют химическая природа и состояние поверхности, на которой реализуется адгезионная связь. Механизм образования этой связи может быть различным  [c.60]

    Было решено, что целесообразно не касаться непосредственно технологии отдельных производств, а выделить только те процессы, которые связаны со взаимодействием целлюлозы с водой. При этом сделана попытка истолкования наблюдаемых явлений е позиции тех представлений, которые характерны для современного состояния науки о полимерных системах вообще. В этих целях основному материалу книги предпослана глава об общих закономерностях поглощения жидкостей и их паров полимерами. Далее следуют две главы, посвященные непосредственно теоретическим вопросам поглощения воды целлюлозой из паровой и жидкой фаз. В главах, относящихся к прикладным аспектам проблемы взаимодействия воды с целлюлозой, рассмотрены с указанных позиций такие вопросы, как активация целлюлозы при ее химической переработке, механизм образования межволоконных связей при формовании бумаги, деформационные свойства целлюлозных материалов, процессы сушки и придания водоустойчивости этим материалам и некото- [c.7]

    Атомная, или ковалентная, связь. Механизм образования молекул из одинаковых или близких по химическим свойствам атомов несколько отличен. В этом случае завершение внешних уровней идет путем образования общих электронных пар. [c.45]

    Учение о химической связи — центральная проблема современной химии. Не зная природу взаимодействия атомов в веществе, нельзя понять причины многообразия химических соединений, представить механизм их образования, их состав, строение и реакционную способность. Создание надежной модели, отражающей строение атомов, молекул и природу сил между ними, позволит рассчитать свойства веществ, не прибегая к эксперименту. [c.41]

    Для большинства органических полимеров более вероятным механизмом образования треков является разрыв химических связей. Заряженные частицы ионизируют и возбуждают молекулы разрывом цепей, концы которых образуют новые области (рис. 11-4, темные кружки), обладающие более высокой химической активностью, чем молекулы полимера в объеме. Поэтому треки могут быть затем развиты в поры при погружении облученной пленки в кислоту или щелочь. Поры, образованные при выщелачивании, имеют коническую форму (рис. П-5), причем угол конуса 0 зависит от отношения Н скорости выщелачивания по [c.53]

    Адсорбционная теория пассивности. Основной механизм защиты металлов, согласно адсорбционной теории пассивности, заключается в насыщении валентностей поверхностных атомов металла путем образования химических связей с адсорбирую- [c.63]

    В растворах гомогенно-каталитические реакции протекают обычно по механизму молекулярных реакций с образованием сложных, активных комплексов или промежуточных соединений с участием катализатора, который снижает энергию активации реакции. Это объясняется тем, что в сложном активном комплексе с участием катализатора уменьшается энергия связей и облегчается их разрыв. Особенно выгодным является образование циклических активных комплексов, так как чередование рвущихся и возникающих химических связей, а также перемещение электронов, образующих химическую связь, по циклическому активному комплексу (миграция связей в молекуле) способствует снижению энергии активации при разрыве химических связей. Кроме того, энтропия активации при образовании в растворе сложных активных комплексов может увеличиться за счет освобождения некоторого числа молекул растворителя, связанных с молекулами исходных веществ и с катализатором. [c.414]

    Действие сил растяжения вдоль оси молекулярной связи К1—Кг проявляется в ослаблении кажущейся энергии ее образования и, таким образом, способствует увеличению вероятности разрыва связи. Если ослабление кажущейся энергии связи существенно, то механическое воздействие можно считать основной причиной деструкции цепи. Поскольку разрыв цепной молекулы сопровождается образованием органических радикалов, а последующее появление неспаренных свободных электронов регулируется механическими силами, то изучение процесса образования радикалов и их реакций дает необходимую с точки зрения молекулярной теории информацию относительно сил, действующих па цепь. Исследования свободных радикалов методом парамагнитного резонанса усиленно развивались в течение последних 30 лет [1, 2]. С тех пор данный метод успешно применялся для объяснения механизма образования свободных радикалов в химических реакциях и под действием облучения видимым и ультрафиолетовым светом, рентгеновским и 7-излучением и облучением частицами [1, 3]. Дополнительно изучались величина фактора спектроскопического расщепления магнитное окружение неспаренного спина свободных электронов и структура свободного радикала. Во всех этих случаях спин свободного электрона действует как зонд, который, по крайней мере временно, присоединяется к определенной молекуле, принимает участие в ее движении и взаимодействует с окружающим магнитным полем. [c.156]


    Подобные задачи связаны с научными положениями различных областей науки — механики, молекулярной физики, физической и коллоидной химии, что в конечном итоге привело к созданию нового общенаучного направления — физико-химической механики. Физико-химическая механика определяется как наука, изучающая закономерности молекулярного механизма образования пространственных структур в дисперсных системах, а также процессов деформации и разрушения таких структур, твердых тел и материалов в зависимости от совокупности физико-химических и механических процессов. Учитывая, что большинство реальных твердых и жидких ма- [c.8]

    Как уже указывалось в 2 гл. I, в зависимости от того, по какому механизму происходит перестройка (разрыв одних и образование других) химических связей в элементарном акте, различают гомолитиче-ские процессы, идущие с разрывом одних электронных пар и образованием других и гетеролитические реакции, в ходе которых все электронные пары сохраняются. Активированный комплекс одного и того же типа может реализоваться в случае как гомолитического, так и гетеролитического процесса. Например, реакции (1П.ЗЗ) и (П1.36) идут через линейный трехчленный активированный комплекс по типу (111.35). Однако первый процесс является гетеролитическим — связь С — I разрывается с переходом пары электрона на атом I, а новая связь С—О завязывается за счет неподеленной пары электронов 0Н . Второй процесс, наоборот, является гемолитическим — двухэлектронная связь И—С1 образуется за счет неспаренного электрона атома С1 и одного из 15-электронов атома Н, участвующего в образовании связи С—Н. Электронная пара, образующая эту связь, при этом разрывается и второй электрон остается в виде неспаренного электрона на атоме С свободного метила. [c.97]

    Как И любая химическая реакция, полимеризация начинается с разрыва одних химических связей и возникновения других. Такой разрыв, как известно, может происходить или по гетеролитическому, или гомолитическому механизму. В первом случае образуются ионы, а во втором — свободные радикалы. Полимеризация, протекающая через образование ионов, называется ионной полимеризацией, г идущая с участием свободных радикалов — радикальной. Таким образом, радикальная и ионная полимеризация различаются природой активного центра, начинающего и ведущего макро-молекулярную цепь. [c.390]

    Механизм разрушения, обозначенный в табл. 11.2 как вязко-упругий, характеризуется протеканием процессов деформационного микрорасслоения материала на тяжи, подобно микрорасслоению полимера в трещинах серебра , но этот процесс выражен более отчетливо. По мере углубления зоны разрушения один за другим образуются и рвутся тяжи. Разрыв отдельных тяжей происходит в различных местах по их длине, поэтому после сокращения концов тяжей на поверхностях разрушения возникают бугорки и впадины, образующие в совокупности шероховатую поверхность. Образование тяжей связано с преодолением в основном межмолекулярных связей, а механизм медленного разрыва эластомеров в целом состоит из элементарных актов, включающих как преодоление межмолекулярного взаимодействия при образовании тяжей, так и последующий разрыв химических связей при обрыве тяжей. Основной вклад в долговечность эластомеров дает медленная стадия разрушения, где скорость процесса разрушения лимитируется не разрывом химических связей, а вязкой деформацией в микрообъемах, приводящей к микрорасслоению материала. [c.336]

    Образование сильно ориентированных тяжей на первой стадии разрушения связано с преодолением межмолекулярных связей. Поэтому молекулярный механизм медленного разрыва высокоэластических полимеров является ведущим. Он состоит из элементарных актов, включающих преодоление межмолекулярного взаимодействия при образовании тяжей и затем разрыв химических связей. Предположение о том, что кинетику процесса разрушения определяют главным образом межмолекулярные связи, впервые было высказано в работах Гуля с сотр. [12.12]. [c.337]

    Рассмотрим теперь современные представления о путях и механизме превращений липидной части органических веществ в ут леводороды нефти. Пути эти сложны и многостадийны. Лишь небольшая часть исходных молекул попадает затем в нефть в неизмененном или мало-измененном виде. Основное же превращение органического вещества в осадочных породах заключается в образовании нерастворимого продукта — геополимера, называемого обычно керогеном. В состав керогена, кроме остатков исходных органических молекул, входит и неорганическая составляющая, представленная обычно глинистыми минералами Детальное описание состава, свойств и строения керогена можно найти в монографиях [1, 2]. Для понимания механизма превращения органического вещества особенно важно, то, что молекулы последнего на определенном этапе химически связаны со своей неорганической матрицей. По мере погружения керогена в осадочную толщу земной коры, т. е. по мере роста температуры (что особенно важно) и давления в керогене происходят различные микробиологические и химические превращения. Обычно выделяют две основные стадии образования и преобразования керогена а) диагенез, или седиментогенез [1, 3], и б) катагенез. [c.183]

    Электронная теория значительно расширила понятие о кислотах и основаниях, позволив интерпретировать некоторые свойства веществ с единой точки зрения, однако эта теория имеет и недостатки. Одно из основных возражений против теории Льюиса заключается в том, что в этой теории для отнесения вещества к кислоте или основанию используется механизм его образования, что ставит классификацию в тесную зависимость от взглядов на природу химической связи. [c.33]

    Рассмотренный для молекулы водорода механизм образования химической связи был распространен на другие молекулы — простые и сложные. [c.98]

    Ферменты являются белками, поэтому любые агенты, вызывающие денатурацию белка (кислоты, щелочи, соли тяжелых металлов, нагревание), приводят к необратимой инактивации фермента. Однако подобное инак-тивирование относительно неспецифично, оно не связано с механизмом действия ферментов. Гораздо большую группу составляют так называемые специфические ингибиторы, которые оказывают свое действие на какой-либо один фермент или группу родственных ферментов, вызывая обратимое или необратимое ингибирование. Исследование этих ингибиторов имеет важное значение. Во-первых, ингибиторы могут дать ценную информацию о химической природе активного центра фермента, а также о составе его функциональных групп и природе химических связей, обеспечивающих образование фермент-субстратного комплекса. Известны вещества, включая лекарственные препараты, специфически связывающие ту или иную функциональную группу в молекуле фермента, выключая ее из химической реакции. Так, йодацетат I H,—СООН, его амид и этиловый эфир, пара-хлормеркурибензоат lHg—С Н,—СООН и другие реагенты сравнительно легко вступают в химическую связь с некоторыми SH-группами ферментов. Если такие группы имеют существенное значение для акта катализа, то добавление подобных ингибиторов приводит к полной потере активности фермента  [c.147]

    Особенно быстрый прогресс современной химии был вызван проникновением в эту науку представлений об электронном строении атомных и молекулярных оболочек. Не случайно дальнейшее развитие теории химического строения А. М. Бутлерова и положений В. В. Мар-ковникова о взаимном влиянии атомов в молекуле связано с установлением электростатического характера химической связи, а затем — ее электронной природы. Химическая связь —центральная, главнейшая проблема химии. Поэтому некоторые химики справедливо полагают, что раскрыть природу, характер химической связи, закономерности образования и разрушения ее —значит раскрыть механизм и существо процесса превращения веществ, т. е. самую суть химического движения. [c.40]

    Вопрос о механизме действия среды на стеклообразные ПК и ПС был рассмотрен в работе [97]. Автор показал, что появление микротрешин в образце происходит несколько раньше, чем достигается предел вынужденной эластичности полимера в среде. Напряжение, при котором появляется первая микротрещина, автор рассматривал в зависимости от температуры и скорости деформации с помощью теории вязкого течения Эйринга. Из полученных данных автор сделал вывод, что при вытяжке полимера в среде (спирты и углеводороды) не происходит разрыва химических связей, а образование микропустот, характерныд [c.112]

    Перечисленные процессы можно классифицировать на основе механизма образования АТР, являющегося основным макроэр-гическим соединением, запасающим энергию в своих химических связях. Различают образование АТР в результате переноса электронов по дыхательной цепи — окислительное фосфорилирование, а также образование АТР в процессах, не связанных с переносом электронов по цепи (брожения и др.) — субстратное фосфорилирование. В настоящее время первый тип процессов (т. е. окислительное фосфорилирование) правильнее называть образованием АТР за счет трансформации энергии трансмембранного электрохимического потенциала (ТЭП) или сокращенно — мембранным фос-форилированием. [c.41]

    Представления о механизме образования химической связи, развитые Гейтлером и Лондоном на примере молекулы водорода, были распространены и на более сложные молекулы. Ра нработаи-ная на этой основе теория химической связи получила название метода валентных связей (метод ВС). Метод ВС дал теоретическое объяснение важнейших свойств ковалентной связи, позволил понять строение большого числа молекул Хотя, как мы увидим ниже, этот метод не оказался универсальным и в ряде случаев не в состоянии правильно описать структуру и свойства молекул (см. 45), — все же он сыграл большую роль в разработке квантово-механической теории химическон связи и не потерял своего значения до настоящего времени. [c.121]

    Представления Гейтлера и Лондона о механизме образования химической связи оказались чрезвычайно плодотворными и послужили основой для объяснення и приближенного расчета связи в более сложных молекулах. Эти представления легли в основу теории химической связи, получившую название метода валентных связей (сокращенное обозначение ВС). Значительный вклад в [c.83]

    Основные представления о ковалентной связи. Попытка объ-ясшгрь механизм образования химической связи между взаимо-действуюпгими, в том числе одинаковыми, атомами была сделана Гильбертом Льюисом (1875—1946) в 1916 г. Согласно воззоениям [c.42]

    Атом кислорода имеет 6 электронов на внешнем уровне. Из них 2 неспаренных. Поскольку кислород второй по ЭО после фтора, при образовании химических связей со всеми элементами, кроме Р, он будет оггягивать электронную плотность на себя. До завершения внешнего уровня не хватает 2 элекгронов. Значит, максимально кислород может принять 2 электрона. Возможные степени окисления атома О -1 (принят 1 электрон), 2 (принято 2 электрона) и О (в простом веществе). Образование ковалентной связи по донорно-акцепторному механизму в случае донора - кислорода - случай исключительный. Из-за отсутствия свободных орбиталей на внешне.м уровне спаренные электроны не могут быть разъединены. Следовательно, они не могут участвовать в образовании обменной ковалентной связи. Только два неспаренных р-электрона могут образовать [c.74]

    Лекция 4. Химическая связб. Метод валентных связей. Ковалентная связь, механизм ее образования. Характеристика ковалентной связи длина связи между атомами, энергия связи. Свойства ковалентной связи направленность и насьвденность. Валентные углы. [c.179]

    Исследование изнашивания деталей является самостоятельной отраслью знания и в рамках данной книги не представляется возможным полное описание механизма образования износа. В связи с этим коротко остановимся на разновидностях изнашивания и механизмов его образования. К основным видам изнашивания относятся механическое изнашивание, возникающее н результате механических воздействий молекулярномеханическое изнашивание, происходящее в результате одновременного механического воздействия и молекулярных (атомных) сил коррозион-но-механическое изнашивание, обусловленное трением материала, вступившего в химическое взаимодействие со средой. [c.57]

    Анодная поляризация в растворе Н2804 (с концентрацией ОД-18 моль/дм- ) СУ, полученного при 2000 С, вызывает образование мозаики микротрещин и соответствующее увеличение микропористости при потенциале выделения кислорода выше 2 В [8-45]. При этом коррозия не идет по механизму образования межслоевых соединений, а распространяется от дефектов. Продукты коррозии имеют более упорядоченную структуру. С понижением температуры получения СУ его химическая стойкость пониж а-ется [8-46]. Это объясняется потерей прочности СУ, полученного при низких температурах (1100 С), в связи с образованием коррозионных трещин. Для СУ, полученного при 2000 С, наблюдается только питтинговая коррозия при сохранении прочности (рис. 8-22). [c.503]

    Особенно важным для расшифровки механизма образования детонации в двигателе явилось, по мнению некоторых исследователей, представление, неявным образом содержавшееся в концепции М. Б. Неймана, о возможной связи между скоростью сгорания смеси ири низкотемпературном воспламенении и количеством органических нерекисей, накапливающихся в предшествующей холоднонламенной стадип. Действительно, так как органическим перекисям всегда приписывались особые активные свойства (например, способность легко распадаться с образованием свободных радикалов), то казалось естественным предположить, что чем больше самих перекисей или продуктов их распада будет произведено холодным пламенем, тем с большей скоростью будет осущест1 ляться как последующее окисление непрореагировавшего углеводорода, так и пламенное его сгорание при окончательном низкотемпературном воспламенении. А как мы сейчас увидим, именно эта последняя возможность резкого увеличения скорости сгорания смеси при воспламенепия явилась центральным пунктом сложившейся в это время химической теории детонации. [c.178]

    Мембраны играют также важную роль в механизме освобождения и потребления энергии в живых организмах. Различные виды живых клеток получают энергию из окружающей среды в разных формах, однако накопление и использование ее происходит в виде аденозинтри-фосфата (АТФ). При передаче энергии АТФ переходит в аденозин-дифоефат (АДФ), который в свою очередь за счет разных видов энергии присоединяет фосфатную группу и превращается в АТФ. Процесс образования АТФ называется фосфорилированием. Этот процесс в организмах животных и человека сопряжен с процессом дыхания. Аистом генерирования АТФ в животных клетках являются особые компоненты клеток — митохондрии, которые служат своеобразными силовыми станциями , поставляющими энергию, необходимую для функционирования клеток. Митохондрия окружена двумя мембранами внешней и внутренней. На внутренней мембране, содержащей ферментные комплексы, происходит превращение энергии химических связей в мембранный потенциал. При этом важную роль играют проницаемость и электронная проводимость мембран. [c.140]

    Совершенно аналогичен подход к рассмотрению механизма образования химической связи в комплексных соединениях Ре +. Слабые лиганды типа Н2О и Р отдают шесть пар электронов на свободные 45-, 4р- и две 4 -орбитали иона Ре + (рис. 3.25).. Октаэдрическое строение образующихся внешнеорбитальных комплексов позволяет приписать иону PeЗ+sp d -гибpидизaцию участвующих в образовании связей орбиталей. Благодаря высокоспиновому состоянию иона Ре + комплексные ионы 1Ре(Н20)б] + или [РеРб] парамагнитны. [c.137]

    Гидроксиды многих металлов (Л1, Т1, Ре, Си, п, Ве и др.) практически нерастворимы в воде, Свежеполучеииые, они легко реагируют с кислотами, амфогерр1ые из них — и со щелочами. Уравиеиия реакций получения гидроксидов названных элементов (взаимодействие растворимых солей со щелочами, поскольку их оксиды с водой не реагируют), которые обычно приводят [нанример А1 ++ЗОН = А1 (0 1)з1, не отражают сложности механизма этой реакции. Гидроксиды этих металлов имеют сложный состав, особенно при старении (длительном стоянии). В условиях отвердевания (старения) подобных гидроксидов наряду с межмолекулярным взаимодействием и образованием, например, [А1(0Н)з] , [Т1(ОН) , [Ве(0Н)2]п и других (где п — число молекул гидроксида) имеет место межатомное взаимодействие (см. 5.10), протекают химические реакции молекул гидроксидов друг с другом с разрывом межатомных связей и образованием новых молекул. Так, молекулы гидроксида алюминия при взаимодействии образуют кислородные мостики  [c.33]

    Степень полидисперсности связана с механизмом образования полимера. Так, для полимера, полученного радикальной полимеризацией, при рекомбинационном обрыве цепи Ai /Ai = 1 5, при обрыве цепи в результате диспропорционирования М /Мп = 2. Для продуктов поликонденсации наиболее вероятное отношение Мш/Мп = 1 + <7, где —степень завершенности реакции при q- отношение MwfMn 2. Но полимер, подвергнутый различным химическим или физическим превращениям, при которых могут происходить и деструкция и сшивание макромолекул, может характеризоваться практически любым отношением Ми-/М . [c.94]


Смотреть страницы где упоминается термин Химическая связь механизмы образования: [c.146]    [c.204]    [c.473]    [c.82]    [c.22]    [c.119]    [c.20]    [c.14]    [c.94]    [c.162]   
Неорганическая химия (1981) -- [ c.101 ]

Неорганическая химия (1981) -- [ c.101 ]




ПОИСК





Смотрите так же термины и статьи:

Механизм образования АТФ

Механизм образования химической связи. Основные характеристики химической связи

Химическая механизм

Химическая связь

Химическая связь образование

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте