Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Межмолекулярные электронные взаимодействия

    Исследование природы химической связи и строения молекул развивалось параллельно с изучением строения атома. К началу двадцатых годов были разработаны основы электронной теории химической связи (Льюис, Коссель, Борн). Квантово-механическая теория ковалентной связи развита Гейтлером и Лондоном (1927). Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. [c.19]


    Силы отталкивания способствуют обмену кинетической и потенциальной энергий между молекулами, установлению термодинамического равновесия. Межмолекулярные химические связи возникают в результате перераспределения электронной плотности в пространстве между молекулами, частичного переноса заряда от молекулы донора к молекуле акцептора. Такой перенос электронного заряда понижает энергию системы и приводит к образованию молекулярных ассоциатов в чистых жидкостях и комплексных соединений в растворах. Разновидностью межмолекулярных химических взаимодействий является водородная связь, осуществляемая с участием водорода. Атом водорода, ковалентно связанный с атомом фтора, кислорода, азота, хлора, серы, фосфора, углерода, может образовать вторую связь с одним из таких же атомов другой молекулы. В воде, спиртах и кислотах энергия водородной связи составляет 20,9 —33,4 кДж/моль в бензоле, растворе ацетон — вода — около 4,2 кДж/моль. [c.247]

    Одним из имеющих большое значение видов межмолекулярного взаимодействия являются электронодонорно-акцепторные (ЭДА) взаимодействия, приводящие к образованию ЭДА-ком-плексов. Комплексы с переносом заряда (КПЗ) образуются в хемосорбционных процессах, а также при взаимодействии ПАВ-доноров, роль которых могут играть молекулы с неподе-ленными парами, т. е. с а- или л-связями, и веществ-акцепторов электронов с дефицитом электронов в каком-нибудь звене молекулы, например за счет сильных отрицательных (—Es) и (—Ed) эффектов, создающих дефицит электронов по кратной связи. В качестве таких акцепторов известны малеиновый ангидрид, сульфоны, ароматические нитросоединения, цианистые соединения и др. К комплексным соединениям относятся также сэндвичеобразные структуры. [c.204]

    Молекулы брома и его аналогов двухатомны. Как видно из приведенных данных, с увеличением в ряду Вгг — межъядерного расстояния i/ээ энергия диссоциации молекул АЛдисс.э, уменьшается, что объясняется уменьшением степени перекрывания связующих электронных облаков. В этом ряду увеличивается поляризуемость молекул, а следовательно, усиливается способность к межмолекулярному взаимодействию. Поэтому в ряду Вгг — I-j — Atj возрастают температуры плавления и кипения. В обычных условиях бром — красно-коричневая жидкость, иод — черно-фиолетовые кристаллы с металлическим блеском, астат — твердое вещество металлического вида. [c.299]


    С1ЧЛЫ межмолекулярного взаимодействия имеют электрическую природу. На сравнительно больших расстояниях между молекулами, когда их электронные оболочки не перекрываются, проявляется только действие сил притяжения. Еслп молекулы полярны, то сказывается электростатическое взаимодействие их друг с другом, называемое ориентиционным. Оно тем значительнее, чем больше дииольный момент молекул [х. Повыи1ение температуры ослабляет это взаимодействие, так как тепловое движение нарушает взаимную ориентацию молекул. Притяжение полярных молекул быстро уменьшается с расстоянием г между ними. Теории (В. Кеезом, 1912 г.) в простейшем случае для энергии ориентационного взаимодействия дает следующее соотношение  [c.136]

    Наконец, в группу О выделяются молекулы, в функциональных группах которых электронная плотность сконцентрирована на одном из центров и понижена на другом. К ним относятся вода, спирты, первичные и вторичные амины. Межмолекулярное взаимодействие молекул группы О с молекулами группы А остается неспецифическим (в основном это дисперсионное и отчасти индукционное притяжение). Межмолекулярное же взаимодействие молекул группы В с молекулами групп В и С, а также друг с другом включает обычно значительный вклад специфического взаимодействия. Кроме диполь-дипольного, диполь-квадрупольного и других электростатических ориентационных взаимодействий сюда относятся также еще более специфические направленные межмолекулярные взаимодействия, такие как водородная связь и другие [c.12]

    Изучение природы межмолекулярных сил, способствующих ассоциированию асфальтенов, является предметом многочисленных исследований. Обобщая имеющиеся сведения, можно объяснить стабилизацию надмолекупя1 юй структуры асфальтенов, учитьшая все виды взаимодействия, вносящие определенный вклад в суммарную энергию а) дисперсионное, которое выражается в виде обмена электронами между однотипными неполярными фрагментами и действует на очень близких расстояниях (0,3—0,4 нм) б) ориентационное, которое проявляется в виде переноса зарядов между фрагментами, содержащими диполи или гетероатомы, также относится к близкодействующим силам в) тг-взаимодействие ареновых фрагментов, формирующих блочную структуру г) радикальное взаимодействие между неспаренными электронами парамагнитных молекул д) взаимодействие за счет водородных связей между гетероатомами и водородом соседних атомов составляющих молекул е) взаимодействие функциональных групп, связанных водородными связями. [c.25]

    Металлическая связь существенно отличается от типичных ионной или ковалентной связей и от связи межмолекулярной. По природе своей она обусловлена взаимодействием ионов металла с электронами, переходящими от одного иона к другому. В этом отношении металлическая связь сближается с ковалентной связью. Но в отличие от последней металлическая связь не обладает ни направленностью, ни насыщаемостью, сближаясь в этом отноше-. НИИ с ионной связью. [c.126]

    Спектры растворов, жидкостей и кристаллов могут служить важным источником сведений о межмолекулярном взаимодействии, о его тонких деталях. Сравнивая величину низкочастотного сдвига при растворении вещества в серии растворителей, можно определить, как изменяется энергия межмолекулярного взаимодействия веществ с растворителем, электронно-донорные свойства растворителей и др. Особое значение при изучении межмолекулярного взаимодействия приобрела спектроскопия водородной связи. [c.178]

    Межмолекулярные силы между нейтральными молекулами обусловлены электростатическими силами притяжения, называемыми силами Ван-дер-Ваальса, и силами отталкивания. Электростатическое притяжение между ядрами одной молекулы и электронами другой в значительной мере, но не полностью, компенсируется взаимным отталкиванием ядер и электронов обеих молекул. Силы Ван-дер-Ваальса проявляют себя на достаточно близких расстояниях (0,3...0,5 нм) и быстро ослабевают при удалении молекул друг от друга. При значительном сближении молекул резко возрастает роль сил отталкивания, которые начинают уравновешивать силы притяжения. Происходит взаимопроникновение внешних электронных орбиталей молекул, приводящее к специфическому типу взаимодействий -обменному взаимодействию, определяемому квантовыми законами и зависящему от направления спинов электронов взаимодействующих частиц. В зависимости от степени перекрывания и ориентации спинов, обусловленных природой контактирующих атомов, возникают либо силы отталкивания, либо ковалентные связи. [c.126]

    Межмолекулярные электронные взаимодействия [c.86]

    Относительная величина рассмотренных видов межмолекуляр-ных сил зависит от полярности и от поляризуемости молекул вещества. Чем больше полярность молекул, тем бол зше ориентационные силы. Чем больше деформируемость, чем слабее связаны внешние электроны атомов, т. е. чем эти атомы крупнее, тем значительнее дисперсионные силы. Таким образом, в ряду однотипных веществ дисперсионное взаимодействие возрастает с увеличением размеров атомов, составляющих молекулы этих веществ. Например, в случае НС1 на долю дисперсионных сил приходится 81% всего межмолекулярного взаимодействия, для НВг эта величина составляет 95%, а для HI 99,5%, Индукционные силы почти всегда малы. [c.158]


    В группу В входят полярные молекулы, включающие фрагменты с неподеленными электронными парами или я-связями. Это, например, квадрупольные молекулы азота, ненасыщенные и ароматические углеводороды, а также молекулы с такими ди-польными функциональными группами, как, например, кислород в эфирах и кетонах или азот в третичных аминах и нитрилах. Полярные связи или функциональные группы должны быть расположены в периферических частях таких молекул, т. е. быть доступными периферическим полярным группам других взаимодействующих с ними молекул. Молекулы группы В способны проявлять наряду с универсальным неспецифическим также и более специфическое направленное межмолекулярное взаимодействие. Специфическое взаимодействие осуществляется, однако, только в том случае, если другой партнер, вступающий в межмолекулярное взаимодействие с молекулами группы В, имеет положительный заряд, локализованный на периферическом фрагменте малого радиуса (это может быть, например, в той или иной степени прбтонизи-рованный атом водорода в группах ОН кислотного типа или другой электроноакцепторный центр). Поэтому межмолекулярное взаимодействие молекул группы В с молекулами группы А остается неспецифическим межмолекулярное же взаимодействие молекул группы В между собой, помимо универсального неспецифического, может включать значительный вклад специфических взаимодействий, связанных с уже указанными особенностями распределения электронной плотности. Сюда относится, например, дииоль-диполь-ное притяжение молекул кетонов или нитрилов, [c.12]

    Образование ароматическими соединениями окрашенных молекулярных комплексов также связано с межмолекулярным электронным взаимодействием внутри полимеров, в которых отдельные молекулы соединены плоскость с плоскостью. Перенос энергии возбуждения от молекулы к молекуле в органических кристаллах наблюдался в антрацен-нафталиновой и других системах измерением флуоресценции, вызываемой ультрафиолетовым и видимым светом. [c.412]

    Электронное строение еще сложнее у антрацена и изомерного ему фенантрена. Рентгеноструктурный метод оказывается недостаточно чувствительным для характеристики электронного состояния связей С—С в конденсированных аренах. Однако,он дает, что С-С-связи узловых атомов (их четыре, а у нафталина — два) и С2-С3, С -Су имеют почти одинаковую длину, что не может быть объяснено анализом я-электронного взаимодействия и для отдельной молекулы маловероятно. Очевидно следует учесть, что рентгеноструктурный анализ дает нам сведения не о независимой молекуле, а о молекуле в твердой фазе, в которой она искажается за счет довольно значительных сил межмолекулярного взаимодействия. [c.336]

    Природа межмолекулярных связей состоит в электростатическом взаимодействии, причем, в отличие от ионной и ковалентной связей, сдвиг электронов взаимодействующих молекул осуществляется внутри молекулы. Силы Ван-дер-Ваальса появляются в результате действия трех разных факторов  [c.222]

    В комплексно-связанных макромолекулах ПСС реализуется не только внутри, но и межмолекулярное обменное взаимодействие л-электронов. В них облегчается переход л-электронов в возбуж- [c.22]

    Существуют не только внутримолекулярные, но и межмолекулярные водородные связи с л-электронным взаимодействием. Они образуются в димерах карбоновых кислот (в), между пептидными группами белков и других соединений (г, д), между амидинными группировками (е) [297], между молекулами изатина (ж), молекулами индиго (з) и др. Так, например, при переходе изатина или индиго из кристаллического состояния в парообразное (от ассоциата к отдельным молекулам) происходит сильное изменение окраски. Пары индиго имеют красно-фиолетовую окраску длинноволновый максимум поглощения сдвинут на 100 ммк в сторону коротких волн по сравнению с кристаллами [292, 287]. В системах тн-мин +аденин, цитозин + гуанин также, по-видимому, образуются водородные связи с я-электронным взаимодействием. Эти системы входят в определенном отношении в состав ДНК клеток и играют большую роль в жизненно-важных биологических процессах [124]. [c.199]

    В настоящей работе было предпринято электронно-микроскопическое исследование структуры некоторых аморфных полимеров, обладающих различным строением молекулярных цепей. В качестве объектов были изучены полимеры мышьяка (сальварсан), полиакриламид и сополимер па основе метилметакрилата и метакриловой кислоты. Таким образом, были исследованы полимеры, содержащие различные полярные группы в цепи и, следовательно, обладающие различными внутри- и межмолекулярными силами взаимодействия. [c.121]

    Следует отметить, что подобное снижение активности реакционного центра наблюдается также при ноликонденсационном синтезе полиазоариленов и, вероятно, в других случаях синтеза ПСС методами поликонденсации. По-видимому, наряду с внутримолекулярной делокализацией электронов следует учитывать, что при росте макромолекул ПСС реализуется межмолекулярное обменное взаимодействие р- и я-электронов, обусловливающее образование прочных ассоциатов. В таких ассоциатах делокализация электронов уже является объемным эффектом , снижающим реакционную способность функциональных групп растущих цепей. Уменьшение вероятности встреч мономера с реакционной группой макромолекулы, замурованной в пачечном ассоциате, может являться дополнительным фактором, ограничивающим скорость и глубину превра-щения . Кроме приведенных факторов, в пользу такого объяснения говорит наблюдавшееся в работе увеличение молекулярного веса полиазинов при проведении поликонденсации в среде протонной кислоты (уксусная, масляная) по сравнению с реакцией в диметилформамиде. Действительно, по-видимому наличие ионов Н+ способствует распаду донорно-акцепторного ассоциата за счет его пере-комплексования молекулами кислоты. [c.109]

    Прежде чем рассмотреть электронное взаимодействие между частями молекулы, полезно классифицировать все известные типы взаимодействия между отдельными нереагирующими молекулами. Можно ожидать, что различные типы взаимодействия, которые возникают между молекулами, должны проявляться и во внутримолекулярном взаимодействии между соответственно расположенными частями одной молекулы. Впрочем, как будет видно из дальнейшего изложения, имеются также определенные эффекты, характерные только для взаимодействия внутри молекулы, которые в основном зависят от типов связей. Сначала удобнее рассмотреть межмолекулярные взаимодействия. Их можно разделить на три основных вида электростатическое, электрокинетическое и обменное. [c.38]

    Для характеристики свойств органических полупроводников имеют большое значение подвижные я-электроны, а также благоприятные межмолекулярные электронные взаимодействия. Интересно, например, что удельная электрическая проводимость о (Ом х хсм 1)в группе многоядерных углеводородов (нафталин, антрацен, нафтацен, пентацен, виолантрен, виолантрон) увеличивается с (нафталин) до 4,5-(виолантрон) с ростом числа конденсированных ароматических колец в молекуле. [c.142]

    Химическое дально.действие в ПСС, по-видимому, определяется не только электронным строением макромолекул, но и в значительной степени зависит от межмолекулярного электронного взаимодействия, реализующегося в донорно-акцепторных ассоциатах. По-видимому, следствием этого является рассмотренное выше инактиви-рование реакционного центра и концевых групп при формировании ПСС. [c.45]

    Х= N( H8)з, Р, С1, Вг, I, И, СНз, СНО, СООСНэ, ЗСЫ, СК, ОСНз, МОг. Показано, что в индивидуальных соединениях этого типа имеет место сильное межмолекулярное взаимодействие атома олова одной оловоорганической молекулы с атомом азота пиридинового кольца или с заместителем X другой оловоорганической молекулы. При переходе от чистых веществ к их растворам в сильно сольватирующих растворителях, координирующих с атомом олова, межмолекулярное координационное взаимодействие атома олова с заместителем X пропадает. При этом изменение параметров мессбауэровских спектров пара-замещенных фенолятов и тиофенолятов триэтилолова при переходе от одного заместителя к другому определяется чисто внутримолекулярными электронными эффектами заместителей X. При этом оказалось, что наиболее чувствительным параметром к изменению электронного влияния заместителя является квадрупольное расщепление. Произведена корреляция величин А соответствующих соединений с а-константами Тафта, характеризующими индуктивный эффект заместителя (а,) и его эффект сопряжения (Ос)-Из рассмотрения корреляционных зависимостей следует, что при интерпретации данных ПО мессбауэровским спектрам соединений олова необходимо учитывать эффект сопряжения заместителя X с атомом олова. Кроме того, показано [85], что атом олова более склонен к образованию п-связей с атомом серы, чем с атомом кислорода.— Прим. ред. [c.288]

    Поясним смысл отдельных составляющих АЕ. Электростатический вклад представляет собой энергию электростатического взаимодействия двух молекул с недеформированными электронными оболочками. Разумеется, эта энергия при близких межмолекулярных расстояниях сильно отличается от энергии диполь-дипольного или другого вида мультипольного взаимодействия. Обменное слагаемое появляется в результате учета тождественности электронов взаимодействующих молекул, когда их электронные облака перекрываются заметным образом. Поляризационный вклад в АЕ и вклад от перепоса заряда представляют собой понинчение энергии системы в результате перераспределения электронной плотности внутри подсистемы (поляризация) и между подсистемами (перенос заряда) при образовании Н-связи. Дисперсионное слагаемое представляет собой выигрыш в энергии системы в результате корреляции в движении электронов различных молекул. [c.16]

    Чтобы понять связь физических свойств веществ с их строением, необходимо знать природу сил, действующих между молекулами. До сих пор не существует строгой теории межмолекулярных сил. Суть современных теорий сводится к тому, что выявлены три наиболее вероятные причины, обусловливающие межмолекулярное взаимодействие иеионогенных соединений (вандерваальсовысилы) — взаимодействие постоянных диполей (ориентационные силы Кеезома) взаимодействие наведенных диполей (индукционные силы Дебая) взаимодействие мгновенных диполей, образованных благодаря определенному положению электронов в молекуле (дисперсионные силы Лондона). К этим трем видам сил можно добавить силы слабого химического взаимодействия типа водородных связей и слабых комплексоподобных взаимодействий. Иногда водородные связи не выделяют из ориентационных сил, отмечая их одинаковую природу. Мелвин-Хьюз относит к межмолекулярным силам взаимодействие между ионами, хотя в равной степени их можно отнести к внутримолекулярным связям. [c.8]

    Природа электронного взаимодействия между донором и акцептором электронной пары в рамках теории кислот и оснований Льюиса не может быть унифицирована. Поэтому во второй половине XX в. была предложена классификация кислот и оснований по типу орбиталей, принимающих участие в образойанни межмолекулярных донорно-акцепторных связей в кислотно-основном комплексе. При таком подходе кислоты (акцепторы) разделяют на а-, V-, и 71-типы, а основания (доноры) - на п-, о HTt-iSima. [c.417]

    Отклонение связи Сдр-Са.,, от плоскости кольца происходит в результате электронного возбуждения молекулы. В этом случае ненолносимметричный характер соответствующего колебания может проявиться лишь в спектре поглощения для перехода 0-1, а в спектрах люминесценции (или перехода 1-0 в спектре поглощения) характер колебания остается полносимметричным. При этом различие межмолекулярных сил взаимодействия в различных агрегатных состояниях может иметь лишь косвенное значение, определяющее возможность или невозможность этого эффекта. [c.132]

    Таким образом, особенности температурной зависимости частоты ЯКР часто определяются особенностями химической связи, в которой участвует исследуемый атом. Рассмотрим еще один пример, где необычная температурная зависимость подтверждает наличие межмолекулярного координационного взаимодействия (рис. 3-3). Если высокочастотная линия ЯКР С1 в 5ЬС1д удвоенной интенсивности достаточно хорошо подчиняется закону Байера, то низкочастотная имеет две особенности 1) наличие максимума в области 55 ° К и 2) малый температурный коэффициент частоты выше этой температуры. Расчеты [22] хорошо объясняют такое поведение наличием координационного взаимодействия атома хлора, отвечающего низкочастотной линии ЯКР, одной молекулы 5ЬС1з с атомом сурьмы другой молекулы. Электронная плотность с ря-орбитали атома хлора подается на свободную -орбиталь атома сурьмы, что подтверждается понижением частоты ЯКР этого атома хлора по сравнению с двумя другими и большим параметром асимметрии градиента поля для этого атома (т] = 15,7%) [21]. С повышением температуры на частоту ЯКР действуют два конкурирующих механизма деформационные колебания, ослабляющие координационную связь и повышающие частоту ЯКР, и обычное байеровское усреднение градиента электрического поля, понижающее частоту ЯКР. [c.46]

    Позднее Малликен [70—72] выдвинул новую теорию образования молекулярных соединений, в которой обобщил результаты экспериментальной работы Бенеши и Гильдебранда [73]. Эта теория сыграла важную роль не только в выяснении причин образования типичных молекулярных соединений, но также и в понимании природы межмолекулярного взаимодействия. В основе теории Малликена лежит идея о том, что атомы, ионы и молекулы способны выступать в качестве донора или акцептора электрона. Образование молекулярных соединений объясняется электронным взаимодействием между двумя молекулами, одна из которых является донором, а другая — акцептором электрона. [c.225]

    Для определения Е по уравнению (3) необходимо знать значение к. По-видимому, к не может быть универсальной величиной для всех типов водородных связей. На основании [244] можно принять, чтойбудет иметь определенное постоянное значение для данного типа водородной связи в ряду сходных соединений, например, для ряда соединений, представленных в табл. 1. Численное значение к следует определить из опытных данных для одного или двух соединений, сходных по своей природе с соединениями рассматриваемого ряда. Энергия образования межмолекулярной водородной связи с я-электронным взаимодействием в димерах карбоновых кислот, по данным работы [308], равна приблизительно 8,0 ккал моль (Av 520 слг- ).Отсюда по формуле (3) получаем к = 1,7-10" /скал Энергию внутримолекулярной водородной связи с л-электронным взаимодействием можно определить, например, по данным для а-оксиантрахинона. [c.201]

    Второй разновидностью вандерваальсовых межмолекулярных сил является притяжение, обусловленное такой синхронизацией движения электронов на заполненных орбиталях взаимодействующих атомов, при которой они по возможности избегают друг друга. Например, как показано на рис. 14-12, электроны на орбиталях атомов, принадлежащих взаимодействующим молекулам, могут синхронизировать свое движение таким образом, что в результате возникает притяжение между мгновенными диполями и индуцированными ими диполями. Если в некоторый момент времени атом, изображенный на рис. 14-12 слева, имеет большую электронную плотность слева (как и показано на рисунке), то этот атом превращается в крошечный диполь с отрицательно заряженным левым концом и положительно заряженным правым концом. Положительно заряженный конец притягивает к себе электроны атома, изображенного на рис. 14-12 справа, и превращает его в диполь с аналогичной ориентацией. В результате между двумя атомами возникает притяжение, потому что положительно заряженный конец левого атома и отрицательно заряженный конец правого атома сближены. Аналогичные флюктуации электронной плотности правого атома индуцируют мгновенный диполь, или асимметрию электронной плотности, на левом атоме. Флюктуации электронных плотностей происходят непрерывно, а их результирующим эффектом является очень слабое, но важное по своему значению притяжение между [c.611]

    Положение линий в спектрах ЯМР радикалов описывается статическим гамильтонианом (IX. 1), не зависящим от времени. Истинный спин-гамильтониан, как уже отмечалось в гл. III, зависит от времени, поскольку электрон-ядерное взаимодействие изменяется во времени и по величине, и по знаку. Эти из1иенения могут быть вызваны рядом причин. Вращение радикала модулирует электрон-ядерное дипольное взаимодействие внутри радикала, электронная спин-решеточная релаксация со временем Tie изменяет знак изотропного и анизотропного СТВ с частотой TTJ. Обменное взаимодействие электронов приводит к переориентации электронных спинов с частотой Шобм и, следовательно, к модуляции изотропного и анизотропного СТВ с такой же частотой. Трансляционные движения радикалов модулируют межмолекулярное электрон-ядерное взаимодействие. [c.269]

    Хотя внешние электронные сдои инертных газов устойчивы, но в настоящее время установлено образование фторидов ксенона и радона, например ХеРд, Хер4, ХеРг, оксифторидов ксенона, например Хер40, Хер402 и другие. Инертные газы способны, за счет межмолекулярных сил взаимодействия, давать, хотя и неустойчивые, соединения с водой, сероводородом и некоторыми веществами. [c.145]

    Основное участие в межмолекулярно м взаимодействии принимают л-электроны фуранового цикла, что подтверждается на примере разделения фурфурола, метилфуроата и фурфурилового спиртов. Свойства фурфурола определяются совместно альдегидной группой и фурановым циклом. Однако характерная для ф -ранового цикла реакционная способность двойной связи и кислородного атома фурана понижается альдегидной группой. Фурфу- [c.27]

    Упрочнение квазиароматического цикла с водородной связью при возбуждении молекулы может наблюдаться при определенных условиях — при наличии копланарности и достаточной величине энергии л-электронного взаимодействия. В связи с этим нами были изучены спектры люминесценции 1,4-нафтохинона и его а-окси-производных. Если 1,4-нафтохинон в растворах гексана при 77° К дает спектр люминесценции с выраженной колебательной структурой, характеризующейся частотами валентных колебаний групп СО, то а-окси-1,4-нафтохинон проявляет слабую и затухающую люминесценцию (рис. 11). Этот факт можно объяснить разрывом водородной связи в пятичленном цикле при возбуждении молекулы вследствие нарушения донорно-акцепторного взаимодействия и невозможности образования устойчивого квазиароматического цикла с л-электронным взаимодействием. В некоторых случаях межмолекулярные связи в системах с л-электронами также могут сильно влиять на выход люминесценции и даже вызвать ее почти полное тушение. Действительно, наши результаты [311] показывают, что 1,4-антрахинон-дикарбоновая кислота имеет ярко-зеле-ную, но быстро и обратимо затухающую люминесценцию, в то же время спектр люминесценции порошка Р-антрахинон-карбоновой кислоты представляет структуру четырех интенсивных полос, сдвинутых в длинноволновую сторону, и не подвергается концентрационному тушению. Измерениями ИК-спектров установлено, что межмолекулярные водородные связи в Р-антрахинон-карбоно-вой кислоте осуществляются посредством карбоксильных групп (димеризация), а ассоциация молекул 1,4-антрахинон-дикарбоно-вой кислоты происходит с участием карбонильной (хромофорной) группы антрахинона и ОН карбоксильной группы. В диоксановом растворе ассоциация разрушается и раствор 1,4-антрахинон-дикар-боновой кислоты приобретает стабильную зеленую люминесценцию. [c.218]

    Наконец, в группу О целесообразно выделить молекулы, в функциональных группах которых (ОН, ЫН и т. п.) электронная плотность сконцентрирована на одном из атомов и понижена на другом (в группах ОН и ЫН это атомы О или N и, соответственно, Н). К этой группе относятся вода, спирты, первичные и вторичные амины (третичные амины содержат только звено с сосредоточенной на периферии электронной плотностью и поэтому относятся к группе В). Молекулы группы О взаимодействуют с молекулами группы А неспецифически (в основном это дисперсионное и отчасти индукционное притяжение). Межмолекулярное же взаимодействие молекул группы [c.28]

    При образовании раствора в общем случае происходит изменение свойств и растворителя, и растворенного вещества (растворенных веществ). Это обусловлено тем, что в растворе действуют силы, вызывающие и межмолекулярное взаимодействие (электростатическое, ван-дер-ваальсовы силы), ионно-дипольное взаимодействие, проявляющиеся на сравнительно значительных расстояниях, и специфическое взаимодействие (донорно-акцепторное, водородная связь), сказывающееся на сравнительно небольших расстояниях. Первое является общим для всех веществ оно связано с совокупностью физических процессов. Второе связано с перестройкой электронных оболочек молекул, атомов и ионов оно обусловлено химическими изменениями. [c.133]

    Дифенилбериллий обладает дипольным моментом, равным в бензоле 1,64 и в диоксане 4,33 В [24]. Здесь дифенилбериллий, равно как и диэтилбериллий, выступает в качестве акцептора электронов в межмолекулярной обменном взаимодействии с растворителями, действующими как электро-нодоноры. В гептане, который не обладает электронодонорными свойствами, дипольный момент дифенилбериллия равен нулю [25]. [c.474]

    Изложенная ранее теория основывалась на предпо сожении, что взаимодействие между атомами в сталкивающихся молекулах описывается некоторым потенциалом, который получается как собственное значение гамильтониана электропов для фиксированных положений яд ф (адиабатическое приближение для электронных состояний). Применимомь адиабатического приближения предполагает возможность пренебречь переходами между различными электронными состояниями взаимодействующих молекул. Необходимым (но отнюдь не достаточным) условием для этого является большое расстояние между электронными термами свободных молекул. Если же один или оба партнера по столкновению находятся в вырожденном электронном состоянии, то адиабатическое приближение заведомо не применимо. Межмолекулярное взаимодействие снимает вырождение электронного состояния, так что при сближении молекул возиикает ряд адиабатических потенциалов (поверхностей потенциальной энергии), которые при увеличении межмолекулярного расстояния сливаются в вырожденный электрон- [c.88]

    Несмотря на то что возможность межмолекулярных координационных взаимодействий нельзя полностью исключить до проведения рентгеноструктурного исследования, внутримолекулярная координация явля ется более вероятной, в частности, вследствие стабилизации копланарности атома металла с ароматическим кольцом фенольной группы в результате сопряжения последнего с неподеленными электронными парами кислорода. Вместе с тем наблюдаемое расщепление нельзя объяснить влиянием только Ван-дер-Ваальсовых взаимодействий, если учесть его [c.713]

    Спектры поглощения растворов и веществ в жидком и твердом состояниях. Энергия межмолекулярного взаимодействия в конденсированном состоянии больше энергии вращения молекул. Молекулы не могут совершать полные обороты и вращательные полосы в спектрах не наблюдаются. Вместе с этим полосы поглощения, связанные с изменением энергии колебательного движения и электронного возбужде-1П1Я молекул, становятся более широкими. [c.21]

    Силы межмолекулярного взаимодействия, возникающие без передачи атомами электронов, носят название ван-дер-ваальсовых сил. [c.90]


Смотреть страницы где упоминается термин Межмолекулярные электронные взаимодействия: [c.24]    [c.162]    [c.104]    [c.11]    [c.7]    [c.34]    [c.83]   
Смотреть главы в:

Органическая химия -> Межмолекулярные электронные взаимодействия




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие межмолекулярное

Межмолекулярные



© 2025 chem21.info Реклама на сайте