Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт биологическая функция

    Металлы УШВ-подгруппы образуют комплексные соединения, в частности с аминами, органическими кислотами и т. п. В виде комплексных ионов железо и кобальт выполняют биологические функции в организмах растений и животных. [c.424]

    Никель, как и кобальт, относится к числу так называемых микроэлементов, хотя его биологические функции изучены в меньшей степени. Входит в состав многих растительных и животных организмов, стимулируя синтез аминокислот в клетке, ускоряя регенерацию белков плазмы крови, нормализуя содержание гемоглобина в больных организмах, а также выполняя ряд других важных ф ункций. [c.499]


    Активную роль играют -элементы в биологических системах. Железо, например, в составе гемоглобина крови служит переносчиком кислорода, кобальт в виде витамина В12 участвует в кроветворении, цинк необходим для полового созревания и воспроизведения потомства, Т1, V, Сг, Мп, N1, Си, Мо выполняют другие важные биологические функции. Интересно отметить, что из перечисленных биологически важных -элементов только железо и титан относительно широко представлены щ Земле массовый кларк остальных элементов не превышает 10 %. [c.496]

    Кобальт — очень важный элемент в питании животных. Он выполняет многие биологические функции, среди которых основное место занимают обмен веществ, рост, кроветворение. В малых дозах кобальт активизирует некоторые ферменты и стимулирует синтез мышечных белков. [c.157]

    Ионы железа, кобальта и никеля — микроэлементы. В этом качестве ноны железа выполняют важные биологические окислительно-восстановительные функции в клетках организмов (Fe- +-f-4-e =Fe + Fe —e =Fe +) ион железа входит в состав гемоглобина, который действует как обратимый переносчик кислорода  [c.400]

    Интересны биологические системы, включающие кобальт. Наиболее изучен в этом ряду кофермент — витамин В12. В состав его входит коррин, аналог порфирина. Кофермент В12 в организме выполняет ряд функций участвует в переносе СНз-группы (мети- [c.573]

    Из 102 элементов периодической системы в живых организмах обнаружено не менее 60. Многие из них относятся к металлам и встречаются в живых клетках в виде разнообразных комплексных соединений. Уже давно стало ясно, что металлы, даже встречающиеся в живых тканях в крайне низких концентрациях (так называемые микроэлементы), и их комплексы — это не случайные примеси, а биологически важные компоненты клетки. Множество патологических нарушений, связанных с недостаточностью в клетке железа, меди, цинка, марганца, молибдена, кобальта, не говоря уже о более распространенных в живых тканях металлах кальции, магнии и др., имеют большое значение для биохимии животных и растений, а также для прикладных областей. Исследования биохимических процессов, в которых участвуют ионы металлов, представляют сравнительно новую, но уже вполне определившуюся и быстро развивающуюся область науки, называемую бионеорганической химией. К ней относится также и моделирование структурных и функциональных параметров природных комплексов металлов. Несмотря на значительные различия выполняемых физиологических функций, типов катализируемых реакций и структур реакционных центров, ферменты, являющиеся предметом исследования в бионеорганической химии, объединяет одна особенность— участие ионов металлов или в самом каталитическом акте, или в поддержании третичной или четвертичной структуры белка, необходимой для оптимального функционирования фермента. Это определяет известную общность подходов к изучению ферментов указанной группы и выбор некоторых методов исследования, заимствованных, с одной стороны, из арсенала энзимологии, а с другой - из химии координационных соединений. [c.5]


    В природе можно обнаружить большее число различных случаев каталитического действия ионов, чем в модельных системах. Поэтому мы рассмотрим функции стабилизаторов и активаторов уже на конкретном биохимическом материале. Функции, связанные с образованием самостоятельных и относительно прочных каталитических единиц, наблюдаются у биологически активных комплексных соединений, прежде всего (хотя не исключительно) у металлопорфириновых соединений. Здесь повышение активности иона достигается посредством связывания его с определенными лигандами, не являющимися субстратом реакции. Большой активностью в окислительно-восстановительных реакциях обладают аминные комплексы меди и ряд комплексов железа, кобальта 1Г других металлов. [c.140]

    Остальные из названных выше элементов металлы. Каковы же их функции Какая роль, например, магния, для чего нужны организму калий и натрий, каковы функции ионов кобальта, сделавшие его необходимым для нормальной работы организма Не всегда удается дать исчерпывающие ответы на подобные вопросы. В дальнейшем мы изложим те сведения о роли ионов металлов в ферментных системах, которые могут считаться надежно установленными. Природа экономно использует металлы — их содержание в организмах невелико и ион каждого вида выполняет различные функции. Чаще всего они связаны с усилением действия биологических катализаторов или образованием специфических активных групп катализаторов — металлосодержащих ферментов. Известно, что металлы, как правило, входят в состав организмов в виде комплексных соединений. Так, железо с азотсодержащими веществами образует сложный комплекс — гем. Гем вступает во взаимодействие с белками, и в зависимости от того, с каким белком он соединился, получающееся вещество приобретает различные свойства. В одном случае получается превосходный переносчик кислорода — гемоглобин, в другом — фермент, разлагающий перекись водорода,— каталаза, в третьем — фермент пероксидаза и т. д. [c.10]

    В природе ионы кобальта встречаются в степени окисления II и III, однако наиболее важное биологическое соединение кобальта— это витамин В12, или кобаламин, в котором присутствует Со(1П) [256] (рис. 6.10). Кобаламин и близкие к нему вещества выполняют разнообразные биологические функции, особенно это касается бактерий. Он необходим для человеческого организма и, вероятно, для больщинства животных и растений. Важную роль он играет в реакциях с участием остатков углеводов, жиров и белков для выработки in vivo. Пернициозная анемия — тяжелое заболевание, встречающееся у пожилых людей. Эта болезнь у млекопитающих обычно сопровождается повышенным выделением с мочой метилмалоновой кислоты. В настоящее время эту болезнь успешно лечат инъекциями витамина В12. [c.381]

    Лучше всего изучена биологическая функция кобальта, которая связана с его. непосредственным участием в построении кофермен-тов ряда витамина В12. Структура этого витамина в общих чертах представлена на рис. 31.9. Она не так поразительна, как это может показаться на первый взгляд. В нее входят четыре основных компонента  [c.648]

    Характеристическая красная и желтая окраски комплексов железа и меди с сидерофилинами не развиваются в отсутствие бикарбоната. Отсюда следует, что этот ион играет главную роль в комплексообразовании металлов с белками [5]. Прямое измерение количества двуокиси углерода, выделяющейся при кислотной денатурации комплексов с железом [42], медью [69], хромом, марганцем и кобальтом [45], подтвердило сделанное ранее предположение Шэйда [5] о том, что на каждый связанный ион металла связывается один бикарбонатный ион. Связывание бикарбоната не является обязательным, и это было продемонстрировано серией исследований связывания металла с трансферрином методом спектроскопии электронного парамагнитного резонанса, которые показали, что специфическое связывание, по крайней мере железа и меди, может происходить и в отсутствие бикарбоната [70]. Образующиеся при этом комплексы были бесцветны и поэтому недетектируемы до появления метода ЭПР. Очевидно, в отсутствие бикарбоната связь железо — белок гораздо слабее, чем в его присутствии, так как при стоянии не содержащего бикарбоната комплекса железа с трансферрином при нейтральных или более высоких значениях pH наблюдается гидролиз железа с образованием нерастворимого гидроксида железа(III). Возможная физиологическая роль этого эффекта будет обсуждена в разделе, посвященном биологическим функциям сидерофилинов. [c.344]

    Каждая клетка состоит из огромного числа атомов и молекул. Попробуем разобраться, насколько они универсальны и какие функции выполняют в клетках Оказалось, что из периодической системы элементов всего лишь шесть биоэлементов используются для построения подавляющего числа биологически значимых молекул углерод С, ьшслород О, водород Н, сера 8, азот N и фосфор Р. Еще 16 микроэлементов присутствуют в клетках в различных количествах и соотношениях. К ним относятся железо Ре, медь Си, цинк Zn, марганец Мп, кобальт Со, иод I, молибден Мо, ванадий V, никель N1, хром Сг, фтор Р, селен 8е, кремний 81, олово 8п, бор В, мышьяк Аз и пять ионов натрий Na , калий К , магний Mg , кальций Са " , хлор С1 . Каков бы ни был принцип отбора атомов для процессов жизнедеятельности, он не связан с их распространенностью в природе. Например, из галогенов только хлор и иод выбраны природой, хотя фтор и бром обладают не меньшей доступностью. По-видимому, в основу отбора положен принцип пригодности и целесообразности. Например, шесть основных биоэлементов имеют набор свойств, достаточный для построения почти всех необходимых для клетки молекул. [c.6]


    Особенно важные функции выполняют в биологических системах ионы железа, меди, цинка, магния, кобальта, кальция, молибдена, марганца среди микроэлементов можно обнаружить также олово, барий, золото и другие, роль которых исследована в меньшей степени. Около двух сотен ферментов для проявления своей активности так или иначе нуждаются в металлах и относятся к группе так называемых металлоэнзимов. В. 3. Горкин, несколько модифицировав классификацию Брея и Харрапа, делит металлоэнзимы на три группы истинные металло-энзимы, для которых характерна прочная связь с металлом металлоферментные комплексы, в которых апофер-мент и металл соединены лабильно и такие металлоэнзимы, которые нельзя с уверенностью отнести к одной из названных групп. [c.181]

    Открытие витамина В12, как было уже упомянуто в главе о микроэлементах, связано с изучением причин возникновения анемии скота в определенных местностях, почва которых содержала недостаточное количество кобальта. Изучение свойств ци-анкобаламина показало, что этот витамин необходим для нормального течения процессов кроветворения. Ряд биологических процессов катализируется производными витамина В12 существует целая группа соединений, сходных с ним по общему типу строения молекулы и называемых кобамидными ферментами они ускоряют процессы изомеризации аминокислот (например, перестройку глутаминовой кислоты в аспарагиновую кислоту), метилирование аминокислот, синтез пуриновых и пиримидиновых оснований, синтез белка, обмен углеводов. Большое число реакций, управляемых соединениями кобальта, делает эти комплексы жизненно важными. Сам по себе витамин В12 не является коферментом функции коферментов выполняют кобамидные коферменты, причем образование этих производных из витамина В12 идет через несколько стадий, в которых участвуют коферменты ФАД и НАД В конечном продукте вместо группы СЫ содержится дезоксиаденозил  [c.133]

    Так, нанример, окислительные катализаторы особенно активны, если в качестве иона-комплексообразователя содержат кобальт и свинец, в то время как каталазно активны соединения железа и меди. Было доказано, что каталитическая функция комплекса может качественно отличаться от функции иона. Так, ион никеля каталазно неактивен (в водных растворах), а комплексные соединения этого иона проявляют каталазную активность. В связи с этим объяснена биологическая эволюция металлсодержащих катализаторов возможность формирования на основе иона катализаторов с совершенно новыми функциями увеличивает биологическую ценность металлов и обеспечивает их вовлечение в процессы метаболизма. [c.136]

    Новые, весьма важные данные о физиологической роли двухвалентных катионов получены при изучении функций рибосом. Установлено, что структурная организация рибосом, от которой зависит их физиологическая активность, в свою очередь зависит от концентрации ионов магния. Рибосомы содержат значительные количества магния (до 0,3 мкмоль1г сухого веса). При недостаточном содержании магния рибосомы распадаются на так называемые субъединицы, что сопровождается значительной потерей их биологической активности. Значительная роль в сохранении структуры рибосом принадлежит также иону кальция. Влияние, аналогичное магнию, на способность рибосом синтезировать белок оказывает кобальт (Вебстер и Уитман). [c.426]


Смотреть страницы где упоминается термин Кобальт биологическая функция: [c.401]    [c.461]    [c.374]    [c.169]    [c.186]    [c.135]    [c.12]    [c.136]   
Неорганическая химия (1987) -- [ c.599 ]




ПОИСК







© 2025 chem21.info Реклама на сайте