Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кофермент А функция

    Стартовой реакцией биосинтеза жирных кислот считается (и это вполне надежно доказано) образование так называемого активного ацетата из пировиноградной кислоты и кофермента А. Суммарное уравнение реакции включает нуклеофильную атаку тиольной группой углерода карбонильной функции и декарбоксилирование пиру-ватного фрагмента с сопутствующими окислительно-восстановительными процессами (схема 5.4.1). [c.131]


    Свойства витаминов и история их открытия. Функции соответствующих коферментов, а также пути биосинтеза некоторых витаминов рассматриваются в основном тексте. [c.378]

    Уреаза катализирует реакцию гидролиза мочевины до аммиака, а ката-лаза — распад Н2О2 до Ы2О + О2. (Обширный обзор по дыхательным ферментам см. в [99].) В ряде случаев в системе необходимо наличие так называемых коферментов, которые обычно имеют меньший молекулярный вес, чем фермент. Функцию коферментов могут нести витамины и простые нуклеотиды, такие, как адонозинтрифосфат (АТФ). [c.561]

    В качестве примера можно привести обратимую дегидрогенизацию этилового спирта в ацетальдегид ферментом алкогольдегидрогеназой (Веннесланд и Весткеймер, 1954). Коферментом этого белка является НАД, который содержит никотинамидную группировку, осуществляющую обратимую окислительно-восстановительную функцию фермента положительный заряд на атоме азота кольца уравновешивается отрицательным зарядом одной из двух фосфатных групп. Когда фермент реагирует с дейтерированным этиловым спиртом СНзСОгОН, атом дей- [c.726]

    В чем состоит роль пиримидиновой части кофермента Можно лишь только предполагать, что аминогруппа при атоме С-4 достаточно близко подходит к водороду у С-2 и действует как слабое основание, облегчающее образование биполярного тиазолий-иона. Проведенные недавно С-ЯМР-исследования солей тиамина свидетельствуют о том, что это действительно имеет место, а рентгеноструктурный анализ показал, что в кристаллических соединениях тиамина взаимная ориентация двух колец благоприятствует выполнению этой функции [325]. Такой процесс мог бы осуществляться с помощью фермента, и протонирование N-1 содействовало бы протеканию процесса. В самом деле, при наличии метильной группы у атома N-1 пиримидинового кольца в нем возникает положительный заряд, который придает этому производному тиамина более [c.460]

    Бензохинон (раздел 8.4.5) и его производные являются эффективными составляющими выполняющих оборонительные функции секретов некоторых жуков. Сложные производные 1,4-бензохинона, убихиноны (коферменты Р), необходимы для переноса электронов в клеточных мембранах. К производным хинонов относится и витамин К, повышающий свертываемость крови, а также ряд природных красителей (разд. 7.9.2.2). [c.182]

    Витамин В3, известный также как пантотеновая кислота, синтезируется зелеными растениями и микроорганизмами, в том числе и микрофлорой млекопитающих (и человека, в том числе). Также не выполняет самостоятельной функции, а является составной частью широко распространенного в живой природе, чуть ли не ключевого во многих биосинтетических схемах кофермента А (КоА, КоА-ЗН). [c.277]


    Фермент Е Название Кофермент Функция [c.261]

    Существует множество биохимических реакций метаболизма лекарственных препаратов в организме человека, однако в основе их лежат фундаментальные механизмы, контролируемые определенным набором ферментов и коферментов, функции которых приведены в табл. 4.1 — 4.5  [c.139]

    Интересны биологические системы, включающие кобальт. Наиболее изучен в этом ряду кофермент — витамин В12. В состав его входит коррин, аналог порфирина. Кофермент В12 в организме выполняет ряд функций участвует в переносе СНз-группы (мети- [c.573]

    Хотя химическая роль всех коферментов пока еще до конца не выяснена, удалось установить некоторые детали определенных функций коферментов. Здесь будет описано химическое поведение двух коферментов, причем особое внимание будет обращено на тот процесс, при котором благодаря объединению субстрата и кофермента становится возможной реакция, энергетически неосуществимая для изолированной молекулы субстрата. [c.310]

    Действие аскорбиновой кислоты в качестве восстановителя можно рассматривать как часть ее физиологической функции. Известно, что она необходима для синтеза белка соединительной ткани — коллагена, в частности для превращения пролильных остатков в оксипролильные остатки, которые составляют седьмую часть аминокислот этого белка. Быть может, аскорбиновая кислота выполняет и другие физиологические функции, но пока нет данных, свидетельствующих о том, что она служит коферментом в какой-либо ферментативной системе. Этот витамин содержится во многих пищевых продуктах, особенно же им богаты зеленый перец, пастернак, шпинат, апельсиновый и томатный соки, картофель. Суточная потребность в витамине С составляет для большинства людей примерно 45 мг этого количества достаточно, чтобы предотвратить заболевание цингой. Однако прием больших количеств витамина до 1000—5000 мг в сутки способствует предотвращению или снижению остроты протекания простудных и других заболеваний. [c.414]

    Для решения различных вопросов, встающих при исследовании структуры и функции ферментов, часто используется подход, связанный с введением в активный центр фермента аналогов кофермента, субстрата или ингибиторов реакции. В то же время в ряде случаев необходимо, чтобы активный центр мог свободно взаимодействовать с участниками реакции и ее ингибиторами. Информация о связывании лигандов в активном центре в этом случае может быть получена из других областей молекулы белка, чувствительных к состоянию активного центра. [c.340]

    Одну из самых обширных групп коферментов составляют соединения, содержащие в качестве фрагмента нуклеотид. Как уже указывалось во введении, к этой группе нуклеотидных коферментов относятся и Соединения, которые не являются коферментами в указанном выше смысле этого слова. Сюда относятся соединения, которые выполняют функции важнейших промежуточных продуктов в ряде биохимических циклов, не будучи непосредственно связанными с белком-носителем. Первостепенная роль в биохимических процессах этих соединений, наиболее важным из которых является аденозинтрифосфат (АТФ) и их функция, по существу аналогичная функциям ферментов, позволяет, хотя и несколько условно, рассматривать их вместе с истинными коферментами. [c.229]

    Не имея возможности обсуждать здесь подробности биохимической роли этой группы коферментов, хорошо известной из курсов биохимии, укажем только, что их главная функция сводится к осуществлению одного из обратимых циклов, связанных с отщеплением или переносом фосфата и пирофосфата при переходе к моно- или дифосфату, и обратного синтеза АТФ, который происходит с участием фосфорилирующего агента в подходящих условиях [c.230]

    Биохимическая функция ДПН и ТПН как кофермента, регулирующего окислительно-восстановительные процессы, состоит в перенесении водорода посредством обратимого окисления — восстановления пиридинового ядра коферменту  [c.236]

    Открытие витамина В12, как было уже упомянуто в главе о микроэлементах, связано с изучением причин возникновения анемии скота в определенных местностях, почва которых содержала недостаточное количество кобальта. Изучение свойств ци-анкобаламина показало, что этот витамин необходим для нормального течения процессов кроветворения. Ряд биологических процессов катализируется производными витамина В12 существует целая группа соединений, сходных с ним по общему типу строения молекулы и называемых кобамидными ферментами они ускоряют процессы изомеризации аминокислот (например, перестройку глутаминовой кислоты в аспарагиновую кислоту), метилирование аминокислот, синтез пуриновых и пиримидиновых оснований, синтез белка, обмен углеводов. Большое число реакций, управляемых соединениями кобальта, делает эти комплексы жизненно важными. Сам по себе витамин В12 не является коферментом функции коферментов выполняют кобамидные коферменты, причем образование этих производных из витамина В12 идет через несколько стадий, в которых участвуют коферменты ФАД и НАД В конечном продукте вместо группы СЫ содержится дезоксиаденозил  [c.133]


    Ферментативные системы, связанные с функцией кофермента В12, достаточно сложны. В связи с этим имеется несколько сообщений об очистке В12-зависимых ферментов или В12-связывающих белков с помощью аффинных сорбентов, обладающих сродством к витамину В12. Фактически для очистки ферментов или белков аффинная хроматография широко используется как один нз наиболее привлекательных методов [270]. С этой целью был разработан метод синтеза нерастворимого носителя кобаламинсефарозы (рис. 6.14). Этот носитель использован для очистки М-5-метилтетрагидрофолатгомоцистеин1юбаламинмстилтрапс-феразы из Е. oli. [c.394]

    Годдарт [297] предложил другой механизм гидроксилирования фенольных соединений при этом он попытался показать, каким образом флавиновые коферменты осуществляют такое окисление. Построение выполнено теоретически и основано па применении волновых функций, квантовой механики и обобщенной теории валентных связей к биологическим проблемам. [c.425]

    Гиорги витамин Вд в соответствии с его химической структурой был назван пиридоксином. Позднее было установлено, что пиридоксин в животных тканях и дрожжах содержится в весьма активной форме повышение его активности обусловлено превращением пиридоксина в пиридоксамин к пиридоксаль [7, 8, 9, 10]. На долю пиридоксина приходится 20%, а пиридоксаля и пиридоксамина — 80% от общего содержания витаминов группы Ве- Витамин Ве в виде кофермента пиридоксаль-фосфорного эфира (кодекарбоксилазы) входит в состав различных ферментов аминокислотного обмена декарбоксилаз, аминофераз и др. Разнообразные биохимические функции витаминов группы Ве нашли широкое освещение в литературе [11—16]. Ряд работ посвящен содержанию пиридоксина в пищевых продуктах [17—20]. [c.153]

    Витамин РР проявляет свое биологическое действие в коферментной форме он формирует активный центр нико-тинамидных коферментов NAD и NADP, главная функция которых — перенос [c.283]

    К активаторам (кофакторам) ферментов относятся ионы многих металлов. Действие их проявляется различно они входят в состав простетической группы, облегчают образование ферментно-субстратного комплекса, способствуют присоединению кофермента к апо-ферменту и т. д. Присоединяясь по аллостерическому центру, они изменяют третичную структуру белковой молекулы, в результате чего субстратный и каталитический центры фермента приобретают конфигурацию, наиболее выгодную для осуществления их функций. [c.121]

    В клеточных биопроцессах очень важную роль играет еще один аденозинфосфат - кофермент А (КоА, или СоА-5Н, 304) Буква А означает основную функцию этого кофермента - перенос ацильных групп. КоА состоит из аденина, связанного с 3 -фосфо-О-рибозой р-Ы-гликозидной связью. Остаток рибозы содержит при С-5 пирофосфатную фуппу, связанную через пантотеновую кислоту с меркаптоэтиламином  [c.168]

    Виндаус выделил витамин Bi в чистом виде [6] и в 1932 г. установил его эмпирическую формулу С12Н ig0N4S l2-HjO. Витамин Bj имеет важное значение для животного организма. Он входит в состав фермента карбокси-лазы, катализирующего реакции декарбоксилирования пировиноградной кислоты и других а-кетокислот. При недостатке тиамина в организме происходит накопление пировиноградной кислоты — продукта обмена углеводов, что нарушает нормальную функцию нервной системы и вызывает заболевание полиневритом (бери-бери). Тиамин излечивает эту болезнь. Кроме того, дифосфат тиамина входит в состав многих других ферментов в качестве кофермента, связанного с апоферментом — белком. Сюда относятся и ферменты, катализирующие реакции обмена углеводов типа альдоль-ных конденсаций и др. Витамин Bj связан также с функцией органов кроветворения, участвует в обмене воды, углеводов, жиров и минеральннх солей [7, 8, 9, 101. Витамином В богаты дрожжи (пивные и пекарские) и злаки, не очищенные от отрубей. Ржаной, а также пшеничный цельный хлеб, крупы (в особенности гречневая) являются для человека основным источником витамина Bj. [c.64]

    Экспериментально показано, что образование лактоновых метаболитов жирных кислот, нередко встречающихся в различных организмах, также контролируется ферментом с участием HS- oA. Гидроксикислоты в кофер-ментно связанной форме используют свою спиртовую функцию в качестве нуклеофила, для этого она может активироваться любым основанием из этого же кофермента (фосфат-анион или азотистый гетероцикл — аденин), [c.134]

    Но в любом случае, какая-то, хоть и ограниченная, классификация является полезной, поэтому в понятия витамины" и коферменты" можно проставить следующие акценты и ввести некоторые определения. Витаминами можно назвать некую группу низкомолекулярных органических соединений различной химической природы, необходимых для осуществления жизненно важных биохимических процессов in VIVO Природные соединения, не являющиеся витаминами, но легко превращающиеся в них в организме человека, называются провитаминами. Если несколько соединений близкой химической природы выполняют одну и ту же витаминную функцию в организме — их называют витамерами. [c.267]

    В связи с тем, что уже сказано о витаминах и коферментах, можно провести следующее их разграничение а) собственно витамины — это соединения, выполняющие свою витаминную роль самостоятельно, б) витамины-ко-ферменты — соединения, выполняющие определенную биохимическую функцию в виде производных, т.е. в виде коферментов, в) следует выделить отдельно группу коферментов, т.е. тех соединений, которые образованы из соответствующих витаминов или синтезированы самостоятельно данным организмом для осуществления того или иного химического процесса в живой клетке. В свою очередь, кофермент выполняет свою каталитическую функцию либо в свободной форме, т.е. самостоятельно, либо в ферментносвязанном виде, о чем более подробно будет сказано позже. [c.267]

    Витамин К выполняет свою основную функцию как кофермент реакций у-карбоксилирования остатка глутаминовой кислоты в неактивной форме факторов свертывания крови — протромбина, после чего соответствуюш,ий [c.281]

    Кофериевт А. Сложное природное соединение, содержащее сульфгидрильную группу —8Н. Биологическая функция кофермента А заключается в том, что он переносит ацетильные группы [СНзС(О)] от одного вещества к другому. На воздухе этот кофермент окисляется, превращаясь в биологически неактивное соединение. [c.152]

    Превращение субстрата в продукт происходит в комплексе Михаэлиса. Часто субстрат образует ковалентные связи с функц. фуппами активного центра, в т. ч. и с группами кофермента (см. Коферменты). Большое значение в механизмах ферментативных р-ций имеет основной и кислотный катализ, реализуемый благодмя наличию имидазольных Фупп остатков гиствдина и карбоксильных фупп дикарбоновых аминокислот. [c.80]

    Несмотря на принципиальную разницу в строении нуклеиновых кислот и нуклеотидных коферментов, из которых одни являются полимерами, а другие к полимерам пе относятся, а также, несмотря на различие в их биологических функциях, оба эти подкласса нуклеотидов целесообразно рассматривать сообща. Это связано с тем, что в основе их химического строения лежат соединения одного и того же типа, которые обычно 1азывают мононуклеотидами. Мононуклеотиды—соединения, в которых на одно пиримидиновое или нуриновое ядро приходится один остаток моносахарида и один остаток фосфорной кислоты. Мононуклеотиды являются мономерами, и.з которых в результате поликонденсации образуются НК, Вместе с те.м мононуклеотиды являются обязательной частью молекулы нуклеотидных коферментов, что и определяет принадлежность коферментов этого типа к классу нуклеотидов, [c.175]

    Именно этими циклами обеспечивается перенос фосфатной группы с одного субстрата на другой и вместе с этим энергообмен. Наряду с группой аденозинполифосфатов в организме распространены, хотя и в меньшей степени, аналогичные соединения, в основе которых лежат другие нуклеозиды, а именно полифосфаты уридина (IV), цитидина (V) и гуанозина (VI). Биологическая функция этих коферментов еще в некоторых случаях недостаточно ясна, однако известно, что они обеспечивают более частные, хотя и не менее важные биохимические процессы, и не нмеют поэтому такого широкого распространения ,  [c.231]


Смотреть страницы где упоминается термин Кофермент А функция: [c.234]    [c.283]    [c.541]    [c.406]    [c.486]    [c.725]    [c.109]    [c.168]    [c.196]    [c.367]    [c.187]    [c.84]    [c.136]    [c.275]    [c.283]    [c.349]    [c.84]    [c.251]   
Ферменты Т.3 (1982) -- [ c.315 , c.321 ]




ПОИСК





Смотрите так же термины и статьи:

Коферменты



© 2024 chem21.info Реклама на сайте