Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки биологическая значимость

    Пластическая функция углеводов связана с тем, что они активно используются в синтезе многих важных для организма веществ нуклеиновых кислот, некоторых органических кислот, а из них — аминокислот и далее белков, липидов и других биологически значимых соединений. [c.232]

    Белки или протеины — наиболее важные производные а-аминокислот, а с позиции их биологических свойств и особого положения в живой природе, белки представляют собой отдельный класс природных соединений, причем очень важный класс. Но учитывая их биологическую значимость и высокую молекулярную массу (от Ю до 10 кО), можно считать белковые соединения все-таки прерогативой биохимических и биофизических исследований. Поэтому здесь мы коснемся только их химической части рассмотрим белки как производные а-аминокислот, т.е. как полипептиды высокой степени поликонденсации. [c.94]


    Обмен белков и аминокислот играет важнейшую и незаменимую роль в жизни организмов. Изучение обмена белков позволяет детально понять глубокий смысл, заложенный в биологическом постулате, гласящем, что организмы делаются белками . В этом постулате заключена та чрезвычайная биологическая значимость, которая присуща исключительно белковым соединениям (биологические функции белков рассматриваются в главе 1). Кроме того, для животных и человека аминокислоты — строительные блоки белковых молекул — являются главными источниками органического азота, который используется в первую очередь для синтеза специфических для организма белков и пептидов (рис. 12.1), а из них — азотсодержащих веществ небелковой природы (пуриновые и пиримидиновые основания, порфирины, гормоны и др.). При необходимости аминокислоты могут служить источником энергии для организма главным образом за счет окисления их углеродного скелета. [c.360]

    Углеводные цепи ганглиозидов и цереброзидов находятся исключительно на внешней стороне клеточной мембраны. Хотя такая мембранная асимметрия ярко выражена, биологическая ее значимость совершенно неясна. Мы уже обсуждали этот факт в гл. 2. Гораздо больше известно о мембранных белках. Исследования последних 10 лет, проведенные с использованием самых различных методов, привели к одинаковому [c.76]

    Назовите свойства соляной кислоты, обусловливающие ее высокую биологическую значимость для переваривания белков. [c.396]

    В плане практического применения эти методы, совершенствуясь, приобретают все большее значение благодаря их избирательности, чувствительности, быстроте выполнения процедур в стандартизованных условиях, пригодности для обработки большого числа образцов. Эти методы постепенно заменяют некоторые традиционные биохимические способы количественного определения содержания веществ. В течение уже почти двух десятилетий при анализе белков для контроля качества пищевых продуктов очень серьезно рассматриваются возможности иммунохимических методов. Если значимость этих методов в данной области и не была так велика, как в клиническом анализе, то это объясняется трудностями анализа, изначально присущими исследуемому растительному материалу. В самом деле, клинический анализ чаще всего применяется к биологическим жидкостям или тканевым препаратам, которые минимально подвергаются денатурирующим воздействиям. В противоположность этой ситуации пищевые продукты, подвергаемые анализу, нередко имеют твердую форму, и из них надо извлекать белки. Кроме того, и в этом состоит принципиальная трудность, натуральные компоненты, используемые в этих продуктах питания, как твердых, так и жидких, могут испытывать резкие физико-химические [c.116]


    Высоко оценивая значимость кристаллографических и иных опытных данных о белках, следует тем не менее иметь в виду их принципиальную недостаточность в решении ряда общих и многих конкретных вопросов структурной и структурно-функциональной организации. Поэтому теоретический конформационный анализ неизбежно должен стать неотъемлемой составной частью всех исследований морфологических и биологических свойств белковых молекул. Для этого необходимо, чтобы расчетный метод был бы менее трудоемким и более быстрым, чем изложенный в книге метод априорного расчета. Надежность существующего метода подтверждается хорошим совпадением результатов расчета с опытными данными. Точность рассчитанных априорно координат атомов нейротоксина II и панкреатического трипсинового ингибитора не уступает точности рентгеноструктурного анализа белков с разрешением -2,0 А. О его скоростных качествах можно судить по следующему примеру. Так, полный расчет трехмерной структуры белка, имеющего -100 аминокислотных остатков, проводится двумя-тремя сотрудниками, владеющими методом, с помощью двух современных персональных компьютеров за -4 месяца, [c.591]

    В последующих главах мы детально опишем различные высокоспециализированные биологические системы. В частности, в гл. 7 будет рассмотрена система вирус насекомых-клетки насекомьгх , которая используется для продукции аутентичных белков, кодируемьЕХ клонированными генами, а в гл. 19 -генетическая модификация домашних животных (коров, овец, свиней). В настоящей главе мы дадим краткое описание наиболее значимых для молекулярной биотехнологии систем, которые также будут рассматриваться в последующих главах. [c.24]

    Биологические ограничения заметно снижают априорную значимость. Априорная вероятность является математическим понятием. Чтобы получить более реальные значения, следует учесть биологические ограничения. Так, не все аминокислоты встречаются с одинаковой частотой (табл. 1.1), в связи с чем вероятность появления данного остатка в данном положении не будет составлять V20 для каждого нз остатков. Кроме того, все остатки представляют собой составные элементы вполне определенной трехмерной структуры. Например, заряженный остаток, как правило, не может находиться внутри белка. Это повышает вероятность нахождения других остатков в этой области от до более высокого значения. [c.234]

    Биохимия является одновременно и биологической, и химической дисциплиной. Биологической она является в первую очередь по природе изучаемых ею объектов, которые представлены веществами животного, растительного и микробного происхождения. Биологической она является и по тем конечным целям, во имя которых проводятся биохимические исследования — познание свойств и выяснение механизмов функционирования веществ, из которых построена живая материя. В то же время, будучи наукой о веществах и о протекающих с их участием химических превращениях, биохимия по своей методологии является химической дисциплиной. Она использует разнообразные методы, которые предоставляют в её распоряжение фундаментальные химические науки — неорганическая, органическая, аналитическая и физическая химия, а также химия высокомолекулярных соединений. В то же время природа исследуемых объектов, особенности решаемых задач накладывают свою специфику на использование этих методов, на их относительную значимость. Наиболее выпукло эти особенности проявляются при исследовании нерегулярно построенных биологических полимеров — белков и нуклеиновых кислот, которые являются более высокой формой организации материи, чем низкомолекулярные соединения и регулярно построенные гомополимеры, также широко представленные в живой природе, в первую очередь различными полисахаридами. [c.230]

    Как известно, все главнейшие свойства и функции организма зависят от свойств и функций важнейших ло своей значимости в природе биологических полимеров — белков и нуклеиновых кислот ( НК). [c.7]

    В настоящей книге впервые систематически излагаются основные сведения о клеточных рецепторах их структурной организации, особенностях строения функционально значимых доменов, молекулярной генетике клеточных рецепторов, биосинтезе и катаболизме. Большое внимание уделено функциональной роли клеточных рецепторов в регуляции биохимических процессов, в том числе транспорта в клетку метаболитов, клеточной пролиферации, экспрессии генов, регуляции, биосинтеза белка по типу обратной связи . Перечисленные проблемы в качестве составной части входят в учебные планы университетов и медико-биологических факультетов медицинских институтов по биохимии и биофизике или самостоятельного курса — биохимия мембран. [c.5]

    В настоящей книге рассматривается несколько основных типов природных соединений, играющих решающую роль в нормальной жизнедеятельности организмов — белки, углеводы, нуклеотиды и стероиды. Выбор именно этих разделов определился не только их значимостью, но и oт yт твиe i современной общей обзорной литературы по этим вопросам в СССР, а в некоторых случаях (например нуклеотиды) и за рубежом. Белки являются основным субстратом животных организмов, катализаторами важнейших жизненных процессов, а обмен белка лежит в основе всех процессов жизнедеятельности Углеводы — главный энергетический ресурс всех живых организмов и основной субстрат растительных организмов, а в виде своих многочисленных производных углеводы входят в сложные комплексные соединения с белками и липидами, имеющие большое биологическое значение. Исключительная роль нуклеотидов вскрыта исследованиями последних лет, когда удалось показать, что именно они являются тем химическим материалом, который обеспечивает передачу первичного биологического кода, определяющим далее в сложной цепи превращений весь комплекс наследственных признаков. Биологическая роль стероидов весьма разнообразна к этому типу природных соединений относятся важнейшие гормоны, желчные кислоты, холестерин мозговой ткани и т. д. Существенно, что не только биологическая значимость, но и химия рассматриваемых в этой книге соединений весьма разнообразна и может служить яркой иллюстрацией решения многих интереснейших и сложнейших проблем органической химии, в особенности стереохимических вопросов. [c.4]


    Прежде всего эта роль определяется значением нековалентпых взаимодействий в формировании пространственной структуры белков и иуклеиновы,ч кислот. В полипептидной цепи каждый хиральный атом углерода связан простыми <т-связя-ми с группами С=0 и NH, что означает возможность заторможенного вращения с низким активационным барьером вокруг этих связей. Вращение вокруг собственно-пептидной связи затруднено, поскольку вследствие р, г-сопряжения эта связь не является строго одинарной. Таким образом, в полипептидной цепи длиной вминокислотных остатков возможно заторможенное вращение вокруг 2N связей. Если принять, естественно с некоторой степенью условности, что каждой из таких связей соответствуют три значения торсионных углов, соответствующих минимумам потенциальной энергии вращения (по аналогии с классической картинкой для вращения вокруг связи С—С в дихлорэтане), то число различных конформаций, которое может принимать полипептидная цепь, составит я Считая, опять-таки с большим элементом условности, что время отдельного поворота вокруг <г-связи имеет порядок 10 с и вращение вокруг всех связей может происходить независимо друг от друга, число поворотов в секунду можно оценить как 2УУ-101 , что для небольшого белка, состоящего всего из 100 аминокислотных остатков, составит 2-10 2. Если бы молекула белка представляла собой статистический клубок, непрерывно случайным образом изменяющий свою конформацию, то некоторую биологически значимую конформацию, необходимую для функционирования белковой молекулы, она принимала бы один раз за 10 с, что абсурдно велико не только по сравнению с временем, реально необходимым для выполнения той или иной функции, но и с временем существования Вселенной вообще. Аналогичная оценка, проведенная для такой достаточно сложной органической молекулы, как NAD, где основная цепочка атомов содержит 14 таких <т-связей, показывает, что время, необходимое для достижения некоторой определённой конформации, существенной для функционирования этой молекулы в химических превращениях и в биохимических системах, составит величину порядка 0,07 с, [c.68]

    Как уже указывалось, конфигурационные свойства полимеров имеют существенное значение в природе и прежде всего в живой природе. Важнейшие для биологии вещества являются высокомолекулярными белки, пуклехрповые кислоты, углеводы, липоиды. Законно поставить вопрос почему для жизни необходимы именно большие молекулы В результате анализа этой проблемы мы приходим к следующим за-ключе1тиям. Биологическая значимость макромолекул определяется их специфическими физико-химическими и в том числе коифпгурацнон-ными свойствами [ "], краткий перечень которых приводится ниже. [c.227]

    Первое доказательство биологической значимости сайтов, сверхчувствительных к нуклеазе, было получено в экспериментах с вирусом 8У40. Его хромосома помимо кольцевой ДНК содержит гистоны, продуцируемые клеткой-хозяин ом. В составе этой хромосомы имеется участок длиной 300 нуклеотидных пар, который свободен от нуклеосом и быстро разрушается под воздействием ДНКазы . Этот участок расположен очень близко от последовательностей ДНК, с которых начинается как репликация ДНК вируса, так и синтез его РНК. Здесь же локализуются и несколько сайт-специфических ДНК-связывающих белков, которые защищают лишь небольшой участок этой молекулы, по-видимому, совершенно лишенный нуклеосом, от нуклеазной деградации. Аналогичным образом, многие участки хроматина в клетке, обладающие гиперчувствительностью к ДНКазе, расположены в регуляторных областях генов (рис. 9-25) в клетках, где эти гены активны, таких сайтов больше, нежели в других клетках. Полагают, что за удаление нуклеосом ответственны сайт-специфические ДНК-связывающие белки, которые принимают участие в регуляции эукариотических генов (см. рис. 9-27). [c.113]

    В гл. V и VI мы рассматривали факты, свидетельствующие о том, что специфические свойства и функции любого белка определяются не только относительным числом и последовательностью аминокислотных остатков, но также трехмерной структурой белка в целом. Кроме того, в настоящее время известно, что сама третичная структура есть функция первичной структуры, т. е. последовательности аминокислот, и упаковка белковых цепей не определяется непосредственно генетическими факторами. Далее, даже если первичная ассоциация нуклеотидов была небеспорядочной, все же, но-видимому, нет оснований считать, что полипептиды, синтезировавшиеся под контролем абиогенных полинуклеотидов, непременно должны были обладать биологически значимыми функциями. С другой стороны, ясно, что как окружающая среда, так и сами взаимодействующие элементы в силу присущих им свойств могут накладывать ограничения на процесс синтеза полипептидов (за счет взаимодействий между объединяющимися мономерами и за счет пространственных взаимодействий со средой). Если предполагаемая модель биогенеза, базирующаяся иа белках, верна, то у нас имеется готовое объяснение для механизма появления полинуклеотидов, содержащих информацию, которая имеет отношение только к биологически выгодным полипептидам. В противном случае, вероятнее всего, появлялись бы многочисленные бессмысленные полипептиды и перед нами встала бы проблема малоэффективной системы проб и ошибок. Итак, образовавшиеся прн добиологическом синтезе полипептидов последовательности могли быть результатом прямого взаимодействия мономеров и взаимодействия между окружающей средой и полимерсинтезирующей системой. Если была необходимость в наличии нуклеиновых кислот, то из этого непосредственным образом не следует, что кодируемая ими последовательность амино- [c.327]

    Высокая монохроматичность лазерного излучения позволяет осуществлять избирательное возбуждение определенных колебательных подуровней в молекулах. Прежде всего это влияет на энергетически-конформаци-онное состояние отдельных участков макромолекул белков и нуклеиновых кислот. В литературе описывается лазерная активация каталазы, сопряжения дыхания с фосфорилированием, иммунологических реакций. Следует, однако, заметить, что вопрос о биологически значимом специфичном действии лазерного излучения и его связи с первичными механизмами взаимодействия света с веществом еще очень далек от сколько-нибудь однозначного разрешения. Очевидно также, что подобная специфика лазерного воздействия на биологические процессы будет проявляться прежде всего при относительно слабых мощностях, не приводящих к глубокой термической деструкции биосубстрата. [c.363]

    Еще один важнейший аспект получения белков для практических целей был обозначен акад. А. С. Спириным в докладе на юбилейной сессии Академии наук СССР (март 1987 г.). Он сводится к преодолению клеточного уровня биосинтеза белков и переходу к масштабированному их синтезу в бесклеточных системах трансляции непрерывного действия, работающих в проточном режиме. Это откроет возможность получать биологически значимые белки (интерферон, инсулин, ах-антитрипсин) и пептиды медицинского назначения, позволит конструировать и производить белки с любыми заданными свойствами, поднимет на новый уровень изучение закономерностей химической коэволюции белков и нуклеиновых кислот. Решающую роль здесь играет наработка необходимых количеств соответствующих мРНК в системах, содержащих РНК-зависимую РНК-полимеразу типа репликазы фага Qp. Уже создана и опробована на РНК-4 вируса мозаики костра, РНК фага М82 и мРНК кальцитонина установка для твердофазной трансляции типа реактора непрерывного действия. Указанные работы по внеклеточному синтезу белка ведутся в рамках Государственной научно-технической программы Новейшие методы биоинженерии . Уже сегодня в лабораторных условиях на небольших биореакторах этим методом можно получать достаточное для дальнейших исследований количество пептидных гормонов, антигенов для диагностических целей, белковых токсинов и антитоксинов, антивирусных защитных белков, некоторых ферментов. Революция в молекулярной биологии и биотехнологии продолжается. [c.305]

    В издании рассмотрены все основные классы природных соединений, для которых приведены кпассификации, особенности молекулярной структуры, таблицы типичных представителей, схемы характерных химических реакций, значимые медико-биологические свойства, пути биосинтеза, природные источники При создании книги использована оригинальная литература по 2000 год вкпючительно Содержание книги отражено в 13 главах Введение, Простейшие бифункциональные природные соединения. Углеводы, Аминокислоты, пептиды и белки. Липиды жирные кислоты и их производные, Изопреноиды-1, Изопреноиды-И, от сесквитерпенов до политерпенов. Фенольные соединения. Алкалоиды и порфирины. Витамины и коферменты, Антибиотики, Разные группы природных соединений, Металло-знзимы, Предметный указатель [c.2]

    Фундаментальные исследования водных растворов мочевины (карбамида), как важнейшего продукта (и участника) метаболизма живых организмов, установление роли, которую играет это вещество в конформационной стабильности глобулярных белков, и его влияния на взаимодействия между ионами и амидами в растворах несомненно актуальны. Важное место в этих исследованиях в настоящее время отводится рассмотрению структурных преобразований, производимых мочевиной в воде и биологически активных водных средах (БЛВС). К числу наиболее значимых БЛВС прежде всего следует отнести плазму крови, в которой содержится около 0,03% мочевины [1]. [c.110]

    Важной характеристикой методов детекции является их селективность. Большие возможности повышения селективности описанных выше методов открывает использование ферментативных реакций. Следует рассмотреть два основных случая. Первый — это определение присутствия и количества фермента по его ферментативной активности, например его содержания во фракциях по ходу выделения. Очевидно, что регистрация ферментативной активности в некоторых фракхщях дает существенно более значимую информацию, чем простое определение присутствия белка, даже если обнаруживаемый фермент обладает специфическими особенностями, например является флавопротеином с характерным для флавиновых нуклеотидов спектром Поглощения. Такое поглощение будет наблюдаться и в случае смеси нескольких флавопротеинов с разными биологическими функциями. В большом же числе случаев фермент состоит только из белка и по своим спектральным характеристикам существенно не отличается от других белков, находящихся в этом же самом материале. Таким образом, только способность [c.253]

    Smith выразил несогласие с мнением докладчика, что образование сшивок и белок не могут иметь биологического значения. Хотя и данные для облученных ультрафиолетовыми лучами Е. соИ В и В/г были весьма сходны (в противоположность различной чувствительности этих бактерий к рентгеновскому излучению), но, как было показано, эти поражения 1не поддаются фотореактивации. Необратимость процесса наводит на мысль о его значимости для, гибели клетки. Аналитически образование сшивок между ДНК и белком — намного более чувствительный параметр, характеризующий эффекты ультрафиолетового облучения, чем димеризация тимина. При дозе 1%- ной . выживаемости можно зарегистрировать только 2% димеров тимина, в то время как сшивки образуются за счет 11 % ДНК. Еще остается выяснить, каков вклад образования сшивок в общее действие ультрафиолетовых лучей на биологическую активность клеток. [c.132]

    Среди многочисленных компонентов биосистемы молекулярного уровня белкам принадлежит исключительная роль в процессах, протекающих в клетках и организме. Поэтому 1юлучаемая с помощью рентгеноструктурного анализа информация о строении белков оказывает огромное влияние на развитие подавляющего большинства направлен-ний молекулярной биологии. Давно стало очевидно, что без знания пространственной структуры белков нельзя понять природу и специфичность их взаимодействий, представить и количественно описать механизмы процессов жизнедеятельности. Рентгеноструктурное изучение белков превратилось в неотъемлемую составную часть биологических исследований оно определяет их научный уровень и значимость получаемых результатов. Данные о расположении атомов в нативных конформациях белков служат незаменимой экспериментальной основой всех поисков решений таких фундаментальных проблем молекулярной биологии, какими являются проблемы структурной и структурно-функ-циональной организации белковых молекул. Первая из них заключается в установлении связи между аминокислотной последовательностью и ее пространственной физиологически активной формой и динамическими конформационными свойствами. Следовательно, она включает в себя [c.54]

    Свободные аминокислоты нервной ткани или так называемый аминокислотный пул на протяжении многих лет бьши объектом тщательного изучения. Это объясняется не только исключительной ролью аминокислот как источников синтеза большого числа биологически важных соединений, таких, как белки, пептиды, некоторые липиды, ряд гормонов, витаминов, биологически активных аминов и др. Аминокислоты или их дериваты участвуют и в синаптической передаче, в осуществлении межнейрональных связей в качестве нейротрансмиттеров и нейромодуляторов. Существенной является также их энергетическая значимость, ибо аминокислоты глутаминовой группы непосредственно связаны с циклом трикарбоновых кислот. [c.37]

    Принципиально важным является иной способ управления распознаванием, который независим, в принципе, от лиганда и поэтому может быть отнесен к категории ауторегуляторных механизмов. Он реализуется благодаря продукции клетками мембранных белков со свойствами антирецептора, способного специфически связываться рецепторами и препятствовать реализации их функций как распознающих молекул. Первые сведения об антирецепторах, их роли в регуляции биосинтеза белка по типу обратной связи приведены в заключительных главах книги. Хотя в этой области исследования только начались, работа в указанном направлении представляется весьма перспективной для раскрытия механизмов гомеостатической регуляции биологических систем и разработки практических путей ее управления. Здесь следует ожидать значительных результатов прикладного характера, способных в еще большей степени повысить значимость проблематики, связанной с изучением клеточных рецепторов. [c.98]

    Однако стабилизирующий отбор, возможно, имеет и еще одно проявление, определяющее направленность эволюции. Показано, что нейтральные мутации, определяющие замены аминокислотных остатков в полипептидных цепях, происходят тем чаще, чем менее важен в функциональном отношении данный участок гена. Так, в псевдогенах различные замены накапливаются быстрее всего, тогда как гистоны НУ практически не менялись в течение всей эволюции животных (Жарких, 1985). Это позволяет предположить, что стабилизирующий отбор, охраняя функционально значимые структуры, а тем самым и консервативные последовательности нуклеотидов, связанные с подобными белками, действительно допускает накопление лишь нейтральных замен. Представляется вероятным, что вся нейтральная, т. е. недарвиновская , эволюция представляет собой, так сказать, тень, отбрасываемую адаптивной эволюцией всех уровней организации на структуру биологических макромолекул. Адаптивная эволюция идет на основе мутаций, влияющих на приспособленность и проявляющихся в фенотипе (Герщензон, 1985). [c.11]

    К сказанному необходимо добавить, что существование нейтральных мутаций, не противоречит представлению об отборе как о движущем факторе эволюции. Действительно, накопление нейтральных замен аминокислот в конце концов приведет к селективно-значимым изменениям структуры белка. С этого момента данный белок подвергается отбору, причем отбор, как и в любом случае отбора по фенотипической изменчивости, будет либо отсекать, либо подхватывать подобные изменения в зависимости от их адаптивной ценности. Аналогичное представление о селекционном механизме эволюции биологических макромолекул высказано А. М. Уголевьш (1985). Можно даже предположить, что более мягкое и более плавное изменение структуры белков через накопление первично нейтральных замен благоприятнее с точки зрения отбора, чем мутационные перестройки, скачкообразно меняющие биологические свойства молекулы в результате изменений ее активного центра. Представление о молекулярных часах , т. е. о равномерности во времени накопления нейтральных мутаций данного белка, не противоречит представлению о неравномерности темпов молекулярной эволюции (КеИу, На1 а(1ау, 1987 Ы е а ., 1987 и др.). Действительно, даже уже имеющиеся немногочисленные данные свидетельствуют о том, что каждый гип белков характеризуется собственным темпом накопления замен. Можно ожидать, что по мере увеличения количества исследованных белков картина будет усложняться- [c.102]


Смотреть страницы где упоминается термин Белки биологическая значимость: [c.31]    [c.125]    [c.208]    [c.149]    [c.227]    [c.259]    [c.190]    [c.254]    [c.39]   
Аминокислоты Пептиды Белки (1985) -- [ c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Значимость



© 2024 chem21.info Реклама на сайте