Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод молекула

Рис. 9.3. Атом-атомный потенциал межмолекулярного взаимодействия атома углерода молекулы н-алкана с атомом углерода графитированной термической сажи Фс( рЗ).,, С(ГТС) Рис. 9.3. <a href="/info/300940">Атом-атомный потенциал межмолекулярного взаимодействия</a> атома углерода молекулы н-алкана с атомом углерода графитированной термической сажи Фс( рЗ).,, С(ГТС)

    В молекулах всех альдегидов, кроме формальдегида, к карбонильной группе присоединен только один атом водорода. А четвертая, остающаяся связь углеродного атома соединяет его с другим углеродным атомом. Возьмем, например, альдегид с двумя атомами углерода, молекула которого выглядит так  [c.122]

    Согласно принципу жестких и мягких кислот и оснований, жесткие кислоты предпочтительно взаимодействуют с жесткими основаниями, а мягкие кислоты—с мягкими основаниями (т. 1, разд. 8.4). При реализации механизма SnI нуклеофил атакует карбокатион, который представляет собой жесткую кислоту. В механизме Sn2 нуклеофил атакует атом углерода молекулы, которая является более мягкой кислотой. Болёе электроотрицательный атом амбидентного нуклеофила — это более жесткое основание, чем менее электроотрицательный атом. Поэтому можно утверждать, что при изменении характера реакции от SnI к Sn2 вероятность атаки менее электроотрицательным атомом амбидентного нуклеофила возрастает [362]. Следовательно, переход от условий реакции SnI к условиям реакции Sn2 должен способствовать атаке атома углерода в цианид-ионе, атома азота в нитрит-ионе, атома углерода в енолят- и фенолят-ионах и т. д. Например, атака на первичные алкилгалогениды (в протонных растворителях) происходит атомом углерода аниона, полученного из СНзСОСНгСООЕ , тогда как а-хлороэфиры, которые взаимодействуют по механизму SnI, атакуются атомом кислорода. Однако это не означает, что во всех реакциях Sn2 атакует менее электроотрицательный атом, а во всех реакциях SnI—более электроотрицательный. Направление атаки зависит также и от природы нуклеофила, растворителя, уходящей группы и других условий. Это правило утверждает лишь, что усиление SN2-xapaKTepa переходного состояния делает более вероятной атаку менее электроотрицательным атомом. [c.97]

    Характеристическим летучим водородным соединением углерода является метан. В обычных условиях водород с углеродом не реагирует. Синтез метана идет только при достаточно высокой температуре и в присутствии катализатора (мелкораздробленный никель). Применяются также и другие способы получения метана из сложных органических веществ. В лаборатории метан можно получить разложением карбида алюминия водой. В природе метан постоянно образуется при разложении органических веществ без доступа воздуха. Химическое строение метана определяется р -гибридизацией атома углерода. Молекула метана представляет собой правильный тетраэдр, в центре которого находится атом углерода, а по вершинам — атомы водорода. Метан — газ легче воздуха, почти нерастворим в воде, устойчив вплоть до 1000° С. Выше этой температуры разлагается с образованием ацетилена и водорода  [c.362]


    Основываясь на соображениях о симметрии молекулы, рассмотрение которых выходит за рамки данной книги, можно сконструировать набор из шести волновых функций, включающих 2р-орбитали всех шести атомов углерода молекулы бензола. Обозначим эти шесть 2р,-орбиталей символами Гд, 2 и ZJ , как это сделано на рис 3-23. В зависимости от того, изображена на рис. 13-23 положительная пучность волновой функции 2р, вверх или вниз, припишем этой орбитали соответственно знак плюс или минус. Тогда указанные выше шесть полных молекулярных волновых функций описываются выражениями  [c.574]

    Полярность проявляется, как уже говорилось, при образовании ковалентной связи между атомами с разной электроотрицательностью. При этом следует различать полярность связи и полярность молекул. Не всякая полярная связь приводит к образованию полярной молекулы. Двухатомные молекулы сложных веществ НС1, НВг, СО и т. п. всегда полярны. Иногда для появления полярности необходимо, чтобы центры распределения положительных и отрицательных зарядов не совпадали. В молекуле СО2 связи углерод — кислород. полярны, причем на атоме углерода находится некоторый положительный заряд, а на каждом из атомов кислорода — такой же отрицательный заряд. Следовательно, на атоме углерода сосредоточен центр положительного заряда. Поскольку атомы кислорода расположены на одной прямой по обе стороны от атома углерода (молекула линейная) на равных расстояниях, положительный заряд нейтрализуется. Таким образом, несмотря на полярность каждой связи в СО , вся молекула в целом является неполярной и причиной этого является ее линейное строение, Наоборот, молекула Н—С = N полярна, так как связи углерод — водород и углерод — азот имеют различную длину и различную полярность. [c.69]

    В молекуле окиси углерода между углеродом и кислородом действуют две ковалентные связи С 0 Электронные пары несколько смещены к более отрицательному кислороду, в результате чего молекула становится малополярной с дипольным моментом 0,12D. Полярность молекулы и наличие у атома углерода свободной пары электрона объясняет способность молекулы к реакциям комплексообразования. Оксид углерода может ыть лигандом по отношению к положительному иону металла и нейтральному атому d-элемента в последнем случае образуются карбонилы металлов. Карбонилы делятся на одноядерные, содержащие один атом металла [Сг(СО)б], [Ре(С0)5] и др., и многоядерные, содержащие от 2 до 4 атомов металла [Fe2( 0)eJ, [ o2(GO)g], [Rh4( 0)iJ, [RUg( 0)i2] и др. Координативная связь возникает за счет пары электронов углерода молекулы СО. Особенно легко образуют карбонилы металлы подгрупп хрома, марганца и 8В группы. Карбонилы, как правило, либо жидкости, либо летучие твердые вещества. При нагревании карбонила координативная связь разрывается и происходит разложение на окись углерода и металл [Ni( 0)4l = Ni + 4С0. Этим пользуются для получения чистых металлов, для нанесения металлической поверхности на тела, имеющие сложный рельеф. Карбонилы металлов 8В группы часто применяют в качестве катализаторов. Карбонилы железа используют в качестве антидетонаторов моторного топлива. [c.479]

    Какой порядок имеет ось симметрии, проходящая через два атома углерода молекулы бензола, находящихся в пара-положении  [c.21]

    Однако исходя из такой формулы невозможно объяснить, почему молекула СО имеет очень небольшой дипольный момент (0,1 Д у формальдегида р, = 2,3 Д) и почему, несмотря на наличие только секстета электронов на внешней электронной оболочке атома, углерода, молекула СО химически сравнительно инертна, а не ведет себя подобно карбену. Остается предположить, что в молекуле СО достройка внешнего электронного уровня атома углерода до октета осуществляется внутри самой молекулы за счет одной из неподеленных пар р-электронов атома кислорода  [c.393]

    Энергии активации обратимой реакции изомеризации третичных в первичные изобутильные радикалы неизвестны. Однако можно предположить, что энергия активации прямой реакции лежит между 18,0 (энергия активации реакции отрыва третичными радикалами атома Н от третичного углерода молекулы изобутана) и 21 ккал (энергия активации отрыва атома Н третичными изобутильными радикалами от метильной группы молекулы бутана) [132]. Энергия активации обратной реакции, но-видимому, находится между 14 и [c.289]

    Наличие заместителей в молекуле с кратными связями приводи к тому, что максимум электронной плотности вдоль связи межд] двумя неодинаково замещенными атомами углерода молекулы суб" страта смещен к наименее замещенному атому углерода. Этот aтo образует отрицательный конец диполя, например [c.167]

    Атомы водорода в группах СН2 расположены попарно в плоскостях, перпендикулярных плоскости зигзагообразной цепи, образованной атомами углерода. Молекула алкана нормального строения представляет собой тетраэдр, в центре которого находится атом углерода, а валентные связи направлены к его вершинам (рис. 1). [c.186]

    Из схемы можно также определить количество СО, образующееся из среднего атома углерода пропилена. Оно равно сумме количеств окисленного ацетальдегида (в каждой молекуле СНдСНО углерод карбонильной группы есть средний атом углерода молекулы пропилена), 4% от окисленного формальдегида (в каждом радикале СН = СНа углеродный атом группы СН есть средний атом углерода в молекуле пропилена) и разности между количеством окисленного радикала СНаСНО и аналитически определенным количеством кислоты (в радикале СНзСНО углерод карбонильной группы есть средний атом углерода в молекуле пропилена). Как видно из данных, номе- [c.395]


    XV-31. Сделайте серию эскизов, представляющих все возможные колебания молекулы двуокиси углерода (молекула линейная), и укажите, какие из этих колебаний будут активны в инфракрасной области. [c.162]

    При этом обычный тип реакций карбонильного атома углерода сменяется на обратный. Атом углерода молекулы альдегида обычно проявляет электрофильные свойства и атакуется [c.209]

    Л. Эти результаты хорошо oглa J"Ют я с данными, полученными для расстояния, которое соответствует двойной длине цепочки с 18 атомами углерода молекулы лецитина — 46 А. [c.362]

    Считается, что в процессе гидрирования этилена на поверхности металла оба атома водорода одновременно присоединяются с одной и той же стороны к двум атомам углерода молекулы этилена при этом становится понятной причина наблюдаемого стереоспецифического присоединения с образованием цис-иро-дукта. Образующаяся молекула этана немедленно десорбируется и соответствующий участок поверхности металла становится доступным для следующего каталитического цикла. Из сказанного следует, что вопрос о том, будет ли данный металл эффективно катализировать реакцию гидрирования или нет, определяется, в значительной мере, реальными размерами его атомов на поверхности и расстоянием между ними. И даже в случае кристаллов такого металла, как никель, который способен катализировать эту реакцию, одна из сторон кристалла может оказаться более эффективной по сравнению с другой в зависимости от того, насколько близки реальные расстояния между атомами к оптимальному для данной реакции. В этом состоит, по-видимому, причина того, что каталитической активностью обладает, как показывает опыт, только относительно небольшая доля поверхности металла, включающая так называемые ал тивные центры, [c.186]

    Вывод о конфигурациях стереоизомеров можно сделать следующим образом. Так как в молекуле циклопропана атомы углерода лежат в одной плоскости, то из шести атомов водорода три должны находиться по одну сторону плоскости кольца и три—по другую сторону этой плоскости. Если у двух атомов углерода молекулы циклопропана заместить по одному атому водорода карбоксилом, то последние могут находиться или по одну сторону плоскости кольца (цис-расположение), или же по разные стороны (транс-расположение)  [c.557]

    Полимеризация. Если условия реакции не благоприятны для быстрого взаимодействия олефина с изопарафиновым углеводородом, то олефин может претерпевать полимеризацию вместо алкилирования. Полимеризация протекает через присоединение карбоний-иона, образовавшегося из олефина, ко второй молекуле олефина, что ведет к более высокомолекулярному катиону, который может терять протон, превращаясь в истинный полимер — уравнение (5), или насыщается, отнимая гидридный идя от олефина или изопарафина превращаясь в сопряженный полимер — уравнение (6). Если ион гидрида отнимается от изопарафинового углеводорода, то алкилирование по меньшей мере частично протекает по механизму первичного алкилирования. Если же ион гидрида отнимается от молекулы олефина, то образуются высоконенасыщенные соединения, фактически обнаруженные в комплексах катализатора с углеводородами. Ион гидрида отнимается от аллильного углерода молекулы олефина весьма легко вследствие резонансной стабилизации образующегося карбоний-иона аллильного типа [5]  [c.188]

    Данные, характеризующие селективность дегидроциклизации гептанов при риформинге фракции 62—105 °С, получены при 495 °С [272 ]. Почти во веет проведенных опытах выход толуола существенно превышал возможный его выход из содержащихся в сырье нафтенов С . Следовательно, наряду с дегидрированием нафтенов, проте-. кала также реакция дегидроциклизации гептанов. При расчете селективности протекания этой реакции исходили из допущения, что не только метилциклогексан, но и пятичленные нафтены с семью атомами углерода молекуле количественно превращаются в толуол. Такое допущение в отношении пятичленных нафтенов не может быть в полной мере обосновано, однако оно позволяет мроследить основные тенденции изменения селективности дегидроциклизации гептанов в зависимости от применямого в процессе давления. Ниже приведены данные, полученные при объемной скорости 1,5 час  [c.145]

    За последнее время появились обзоры и монографии [77, 78], в которых с достаточной полнотой освещены теоретические основы метода комплексообразования парафинов с карбамидом. Поэтому здесь рассматриваются лишь некоторые из основных положений о природе кристаллических комплексов углеводородов с карбамидом и тиокарбамидом и методах их получения. Рентгеновские исследования кристаллических комплексов парафиновых углеводородов с карбамидом позволили в известной степени пролить свет на строение этих весьма интересных соединений. В присутствии парафиновых углеводородов нормального строения или других органических соединений, имеющих неразветвленную углеродную цепь из восьми и более атомов углерода, молекулы карбамида складываются в спираль за счет водородных связей между кислородом карбонильной гдалпы и аминогруппой соседних молекул. В результате из молекул карбамида образуется сплошная спираль, внутри которой находится [c.61]

    В промыщленности парарозанилии получают путем окисления смеси 2 мол. анилина и 1 мол. л-толуидина с помощью нитробензола (Купье). При этом центральный, метановый атом углерода молекулы красителя образуется из л-толуидииа вероятно, в процессе окисления толуидин сначала превращается в альдегид  [c.750]

    Энергии активации обратимой реакции изомеризации третичных изобутильных радикалов в первичные неизвестны. Однако можно предположить, что значение энергии активации прямой реакции лежит между 75,3 (энергия активации реакции отрыва третичными радикалами атома Н от третичного атома углерода молекулы пзо-бутана) и 83,5 кДж-моль- (энергия активации отрыва атома третичными изобутильными радикалами от метильной группы юлe-кулы бутана). Значение энергии активации обратной реакции, по-видимому, находится в интервале 58,5—67 кДж-моль . Это предположение позволяет оценить тепловой эффект обратимой реакции изомеризации, который равен 21 кДж-моль , отношение равновесных концентраций радикалов [(СНз)дС] 1(СНз)2СНСН2] = = ехр (2520/7). Концентрация третичных изобутильных радикалов при обычном крекинге, согласно работам [315, 318], должна превышать концентрацию первичных изобутильных радикалов в 16 раз, при инициированном крекинге — в 35 раз. Понижение температуры сдвигает равновесие изомеризации в сторону образования третичных изобутильных радикалов. [c.206]

    В отличие от твердых видов углерода молекулы в пластических массах (нефтяных пеках) значительно менее упорядочены как в направлении 1 , так и в направлении Ьс. Повышенные значения отношения структурирующихся компонентов к неструктури-рующимся предопределяют химические и физико-химические свойства (увеличение поверхностного натяжения, краевого угла смачивания и др.) и направления использования нефтяных пеков. [c.55]

    Вероятный механизм стабилизации свободных радикалов следующий. При термодеструкцни в результате отрыва боковых цепей у соединений с конденсированными ядрами образуются активные структурные звенья, способные к далг--нейшему росту за счет образования новых связей углерод — углерод. Образовавшиеся вторичные свободные радикалы также будут расти до тех пор, пока при некотором оптимальном размере они не подвергнутся стабилизации и >1е превратятся в неактивные радикалы, неспаренный электрон которых экранирован алкильными или какими-либо другими группами. Рекомбинация таких сложных радикалов между собой затруднена, но при определенных условиях они могут вступать п реакцию с диффундирующими в кристаллиты углерода молекулами газов и паров серы, кислорода, азота, галогенов и др. [c.150]

    Можно подсчитать количество атомов углерода молекулы исходного разветвленного углеводорода, которое подвергается окпсленню до того, как прекращается дальнейшее увеличение степени окислепия несмотря на рост температуры. Оно будет равно отношению суммы молярных количеств образовавв1ихся окислов углерода к числу молей окисленного углеводорода пли, другими словами, сумме молей образовавшихся окиси и двуокиси углерода в расчете на один моль введенного углеводорода. [c.38]

    Химическая связь М—СО в карбонилах металлов включает ст- и я-связп (стр. 460). Ст-Связь образуется по донорно-акцепторному механизму за счет свободных орбиталей атома ( -элемента и электронных пар углерода молекул СО. л-Связь возникает по дативному механизму за счет свободных лР = Р-орбиталей СО и -электронных пар атома -элемента. [c.328]

    В соответствии с гибридным состоянием валентных орбиталей углерода молекулы его галидов СНаЦ имеют тетраэдрическую, молекулы оксида СОа и сульфида Sj — линейную, а оксо- и сульфидо-галидов СОНаЦ и SHal а — треугольную структуру  [c.453]

    Атомы никеля в кристаллической решетке не заряжены и являются мягкими кислотными центрами, к которым присоединяются мягкие основные молекулы СО, имеющие свободную пару электронов. Четыре а-связи между центральными атомом никеля и атомами углерода молекул СО усиливаются я-датив-ными связями, причем электроны заселенных d-орбиталей никеля принимают участие в образовании этой связи за счет незаселенных я-орбиталей атома углерода. Тем самым высокая электронная плотность нейтрального атома металла, которая особенно велика для атомов с низкой степенью окисления, перераспределяется на лиганды, в результате чего достигается более равномерное распределение электронной плотности по всей молекуле. [c.398]

    Отметим, что из шести атомов углерода молекулы глюкозы четыре атома, с номерами 2, 3, 4 и 5, хиральны, поэтому глюкоза имеет много конфигурационных изомеров. Несколько природных сахаров отличаются от глюкозы только конфигурацией у одного из четырех хиральных атомов углерода. Эти сахара имеют различные биологические свойства, что еще раз свидетельствует о чрезвычайной специфичности биологических систем. Многие сахара - оптически активные вещества, так как их растворы вызывают вращение плоскости поляризации линейнополяри-зованного света, как это показано на рис. 23.14. [c.455]

    Упрощенно эту л-систему можно представить себе двумя бубликами, расположенными над и под плоскостью молекулы. О л-электронах, участвующих в формировании этих связей, уже нельзя сказагь, что они принадлежат каким-то определенным атомам углерода молекулы бензола. Эти электроны принадлежат одновременно всем и каждому углероду. Такое обобществление электронов называется делокализацией. [c.199]

    Прежде всего было установлено, что полученный атом-атомный потенциал <рс (лрз)... с(гтс) дает при адсорбции этилена на ГТС заниженные значения 1п [если принять, что фн... с(гтс) (9.44) остается неизменным]. Таким образом, межмолекулярное взаимодей- ствие с ГТС атомов углерода молекул, находящихся в конфигурации 5р2, сильнее, чем в рассмотренном выше случае адсорбции молекул с атомами углерода в конфигурации хр . Уменьшение Кг и 1 при адсорбции на ГТС этилена по сравнению с этаном (см. табл. 1.2) происходит за счет уменьшения числа атомов водорода в мо- лекуле этилена по сравнению с молекулой этана. Этот пример показывает, что адсорбция на ГТС позволяет выявить влияние на межмолекулярное взаимодействие электронной конфигурации атомов углерода в молекулах углеводородов. [c.175]

    А л к а н ы. Протонные спектры насыщенных углеводородов в редких случаях можно использовать для распознавания изомерных структур. Причина состоит в том, что различие между химическими сдвигами СНа-, СНз- и СН-групп невелико и соизмеримо с их КССВ, вследствие чего получающиеся системы почти эквивалентных протонов дают сложные спектры. Обычно они имеют вид широких полос, огибающих большое число близко расположенных сигналов. На рис. 61 приведены спектры ПМР и ЯМР 3-метилгептана. Если в спектре ПМР видны только две широкие полосы, то в спектре ЯМР С присутствуют восемь отчетливо разделенных линий и каждая линия отвечает своему атому углерода молекулы углеводорода. Следует отметить, что никакой другой изомер этого  [c.139]

    Феноляты натрия карбоксилируются в основном а орто-т-ложение при действии СО2 (реакция Кольбе — Шмитта) [286]. Механизм до конца не ясен, но, по-видимому, между реагентами возникает своего рода комплекс [287], вследствие чего атом углерода молекулы СО2 становится более положительно заряженным и занимает положение, выгодное для атаки на кольцо. Фенолят калия, для которого образование комплекса [c.365]

    Еще более инертной является изоэлектронная окись углерода молекула N2 также с 10-электронной внешней оболочкой, которая к тому же лишена дипольного момента, способствующего в молекулах СО и N0 возникновению реакционной способности последняя выражается, например, в образовании карбонилов (например, железа и никеля) с привлечением электронных пар, в частности, и на пустые экстравалентные 4р-ва-кансии. В случае цианидных комплексов (ион СМ изоэлектронен с СО) в связях участвуют последние вакансии четвертого слоя. Их называют последними , так как Ре и N1 принадлежат к четвертому периоду, а 4р-вакансии, принадлежащие к четвертому слою, обычно не используются в соединениях элементов ряда Ре—Си и заселяются лишь в некоторых соединениях (в комплексах специального типа, например в цианидных комплексах). [c.210]

    Большой интерес представляет изомерия инозита (гексаокси-циклогексана) СдНв(ОН)б. Несмотря на то что в молекуле инозита нет асимметрического атома углерода, инозит известен в оптически деятельных формах. Молекулы оптически деятельных веществ несимметричны—они не имеют плоскости симметрии и поэтому несовместимы со своими зеркальными изображениями. При наличии в молекуле хотя бы одного асимметрического атома углерода молекула несимметрична. Однако, как это показано на примере инозита, молекула может быть несимметричной, и не имея асимметрического атома углерода. Для инозита возможно восемь пространственных изомеров из них семь обладают симметрично построенными молекулами и оптически недеятельны. Один из стереоизомеров, в молекуле которого 1,2,4-гидроксилы находятся по одну сторону кольца, а 3,5,6-гидроксилы—по другую сторону кольца, известен в виде двух оптических антиподов  [c.558]


Смотреть страницы где упоминается термин Углерод молекула: [c.399]    [c.262]    [c.175]    [c.461]    [c.49]    [c.49]    [c.50]    [c.98]    [c.240]    [c.432]    [c.506]   
Квантовая химия (1985) -- [ c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Барьеры внутреннего вращении относительно ординарных связей углерода в простых молекулах

В цикле фиксации углерода на одну связанную молекулу С02 затрачиваются три молекулы АТР и две молекулы

ВНУТРЕННЕЕ ВРАЩЕНИЕ В МАЛЫХ МОЛЕКУЛАХ Стереохимия углерода

Горение окиси углерода молекулы в возбужденных колебательных состояниях

Диссимметричные молекулы с двумя асимметрическими атомами углерода

Жизненно важные молекулы, содержащие водород, углерод и кислород

Зависимость дипольного момента сераорганических соединений от числа атомов углерода в молекуле (табл

Зависимость нормальной температуры кипения сераорганических соединений от числа атомов углерода в молекуле (табл

Изменение внутренней числа атомов углерода в молекуле адсорбата

Использование графиков зависимости удерживаемого объема от числа атомов углерода в молекуле в комбинации с качественными реакциями

Использование кривых зависимости удерживаемого объема от числа атомов углерода в молекуле

Коэффициенты чувствительности веществ, рассчитанные с j учетом числа эффективных атомов углерода в молекуле i и подтвержденные экспериментально

Молекулы с несколькими асимметрическими атомами углерода

Молекулы углерода сложные

Молекулы, содержащие двухвалентный углерод. Свободные радикалы

Монофторид углерода строение молекулы

Нуклеофильное замещение при ненасыщенном атоме углерода и в ароматических молекулах

Окись углерода взаимодействие молекул

Определение зависимости величины удерживаемого объема от числа атомов углерода в молекуле алифатических спиртов

Отщепление двуокиси углерода и воды от двух молекул карбоновых кислот

П ревращснис карбоновых кислот в соединения другихк лассо в, содержащие меньшее число атомов углеродав молекуле

Потенциал атома углерода молекулы

Реакции диссимметричных молекул. Образование второго асимметрического атома углерода

Реакции к окиси углерода альдегидов или непредельных соединений совместно с другими органическими молекулами

Реакции к окиси углерода воды совместное органическими молекулами

Регулирование количества компонентов с определенной пространственной структурой молекул в сырье, используемом для получения углерода различной степени анизотропии

Регулирование распределения по числу атомов углерода в молекулах продуктов

СТЕРЕОИЗОМЕРИЯ ОРГАНИЧЕСКИХ МОЛЕКУЛ Свободное вращение вокруг простой связи углерод — углерод

Соединения, молекулы которых содержат длинные углеводородные цепи (п 6, где и - число атомов углерода в цепи)

Соотношение между удерживаемыми объемами и числом атомов углерода в молекуле

Способы изображения органических молекул и пространственные модели. Теория тетраэдрического атома углерода

Способы изображения органических молекул и пространственные модели. Тетраэдрический атом углерода

Стереоизомерия веществ с двумя или несколькими асимметрическими атомами углерода в молекуле. Диастереомеры

Строение молекул и свойства некоторых важнейших соединений углерода (этан, этилен, ацетилен)

Углерод вращение молекул

Углерод межъядерные расстояния в молекуле

Углерод молекула, структурные параметр

Углерод молекула, энергия диссоциации

Углерод молекула, ядерные расстояния

Углерод основное состояние молекулы

Углерод разновидностей углеродных молекул из свободных атомов

Углерод расщепление уровней в молекуле

Углерод связей в молекуле

Углерод строение молекулы

Углерод типы атомов в молекулах

Углерод электродная конфигурация молекулы

Углерод электронное облако молекулы

Углерод. Насыщенные и ненасыщенные молекулы. Аллотропия углерода. Уровни энергии. Испарение графита. Диаграмма состояний углерода

Удерживание зависимость от числа атомов углерода в молекуле

Экспериментальные углекислотные кривые. Молекулы двуокиси углерода и ионы углекислоты



© 2025 chem21.info Реклама на сайте