Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ниобий также Ниобий от олова

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]


    В настоящее время хлорная металлургия применяется для производства титаиа, ниобия, тантала, циркония, гафния, редкоземельных элементов, германия, кремния, олова и даже алюминия. Она является эффективной при переработке не только многокомпонентных руд, но и промышленных отходов, содержащих ценные элементы, металлолома, отработанных тепловыделяющих элементов ядерных реакторов и т. п. Она нашла широкое применение в металлургии редких металлов. Преимуществами хлорной металлургии по сравнению с традиционными способами извлечения металлов из руд являются полнота вскрытия сырья (полнота извлечения из него ценных элементов), а также высокая избирательность. Метод требует совершенной технологии и высокой культуры производства, поскольку хлор и его летучие соединения очень токсичны и химически агрессивны. [c.171]

    Черные металлы — чугун и сталь, занимая исключительно важное место в промышленности и технике, часто служат объектом анализа. Число элементов, которое может находиться в железных сплавах, очень велико, чем и определяется большое разнообразие их физико-механических и химических свойств. Наряду с давно применяемыми легирующими элементами (такими, как хром, никель, кобальт, ванадий, вольфрам), в практику черной металлургии и в последние десятилетия вошли новые компоненты (например, редкоземельные, цирконий, гафний, титан, тантал, ниобий), добавки которых позволяют получать черные металлы с еще более ценными качествами. Кроме того, растет внимание и к ряду элементов, присутствие которых даже в малых количествах, может существенно изменять качество металла. Сюда относятся мышьяк, медь, олово, сурьма, алюминий, цинк и др. Содержание этих компонентов также контролируется, особенно в высококачественных сталях. [c.473]

    Хлор является весьма активным реагентом. При высоких температурах он способен вытеснять серу из сульфидов, а в присутствии восстановителей хлорировать окислы различных металлов и вытеснять из сульфатов, фосфатов, силикатов кислородные соединения серы, фосфора, кремния с образованием соответствующих хлоридов. Это используют в технологии благородных и цветных металлов при рафинировке золота, алюминия, свинца и олова а также в металлургии титана и редких металлов — циркония, тантала, ниобия и др.При хлорировании полиметаллических руд образующиеся хлориды могут быть разделены на основе различия в температурах испарения, а также методами экстракции [c.731]

    Нахождение в природе. Содержание скандия в земной коре оценивается равным 0,0006%. В природе скандий рассеян и встречается лишь в виде незначительной примеси в минералах редкоземельных элементов, бериллия, тантала, ниобия, олова, вольфрама, циркония, титана, алюминия, а также в золах углей, природных водах и окаменелых остатках рыб. Для получения 1 г оксида скандия нужно переработать 3—4 кг гадолинита, [c.205]


    Обычно на практике классифицируют металлы, исходя из общих сырьевых, технологических и потребительских признаков. Принято разделение металлов на черные и цветные. К черным металлам относятся железо и его сплавы, а также металлы, применяемые главным образом в сплавах с железом—хром, марганец. К ц в е т н ы м—относятся все остальные металлы, которые, в свою очередь, подразделяются на тяжелы е—медь, никель, свинец, олово, цинк л е г к ие—алюминий, магний, калий, натрий малы е—сурьма, ртуть, висмут, кадмий редкие—вольфрам, молибден, ванадий, кобальт, ниобий, тантал, титан, бериллий, литий и др. рассеянны е—германий, рений, индий, галлий и др. благородные—платина, палладий, иридий, осмий, рутений, золото и серебро. [c.113]

    В качестве коллекторов применяют сульфид меди — для соосаждения молибдена, цинка, свинца и некоторых других металлов сульфид серебра — для свинца сульфиды кадмия и висмута — для меди, свинца, цинка, никеля, кобальта, серебра, ртути, ванадия, вольфрама, молибдена и др. карбонат кальция — для ниобия, ванадия, вольфрама, молибдена, серебра, бериллия гидроокись алюминия — для железа, свинца, хрома, висмута, кобальта, олова, фосфора двуокись марганца — для кобальта и др. Большое значение имеют также коллекторы, образуемые рядом металлов с органическими соединениями. Купферронат железа применяется для извлечения следов титана, ванадия, циркония 8-оксихинолят свинца— для соосаждения меди 8-оксихинолят меди — для соосал<де-ния кобальта. Применяются также и другие органические коллекторы. [c.347]

    Определению фосфора не мешают 1000-кратное по отношению к фосфору количество кремния, а также титан, тантал, ниобий, мышьяк, сурьма, олово, свинец, бор, индий, таллий, галлий, алюминий, кальций, магний, никель, марганец, медь, железо, ртуть и серебро, если их количества не превышают 250-кратного по [c.101]

    Рутил — наиболее богатый титаном и наиболее устойчивый из всех известных минералов. В чистом виде встречается редко, обычно в нем присутствуют примеси — окись железа (II и III), иногда олово и хром некоторые минералы содержат также ниобий и тантал. Наиболее распространен так называемый обыкновенный рутил, содержащий 92—99% ТЮг. Плотность рутила 4200 кг/м . Цвет — красный, бурый, темно-желтый разновидности с содержанием железа — черные. Рутил относится к весьма распространенным в природе минералам, он встречается как в коренных, так и в россыпных месторождениях. Последние имеют наибольшее значение. [c.131]

    Экстракция ниобия метилэтилкетоном является эффективным методом отделения его от-железа(П1), никеля и урана Для этого водный раствор делают 8%-ным по фториду аммония, 10 об. %-ным по концентрированной плавиковой кислоте, 20 об.%-ным по концентрированной серной кислоте и дважды экстрагируют в каждом случае в течение 5 мин равными (по сравнению с водной фазой) объемами кетона, предварительно приведенного в равновесие с указанной смесью кислот. Органическую фазу упаривают в платиновой посуде, а смолистый остаток для разрушения органических соединений нагревают со смесью концентрированной азотной и серной кислот, а затем для удаления азотной кислоты упаривают до появления паров серной кислоты. Коэффициент распределения ниобия для данной системы равен примерно 200 (органич./водн.). Ванадий и вольфрам также частично экстрагируются. Оба эти элемента мешают при колориметрическом определении при помощи роданида и хлорида олова(П). [c.614]

    Многие спектральные методы, разработанные для определения натрия в элементах, применимы для определения натрия в сплавах и соединениях этих элементов. Поэтому такие методы также рассмотрены в данном разделе. Спектральные методы применяют для определения натрия в рубидии [42, 421], магнии [1112], кальции [485], алюминии [537, 690, 820, 844, 956, 974, 1006, 1112, 1114, 1208, 1215], графите [936], кремнии [138], олове [388], свинце [495, 522, 773], ванадии [78], мышьяке [1007], сурьме [115, 149, 1007], ниобии [35], тантале [129], селене [123, 969, ИЗО], теллуре [123, 140, 1198], хроме [406, 679], молибдене [179, 469, 862], вольфраме [35, 469, 798, 898, 1013], уране [156, 589, 1054], осмии [124, плутонии [1245]. [c.163]

    Осаждение щавелевой кислотой. Щавелевая кислота образует малорасгворнмые оксалаты с катионами многих металлов. Оксалат аммония при pH —8 полностью осаждает ионы кальция, стронция, скандия, иттрия, лантана, редкоземельных элементов, актиния, железа, золота, висмута, индия, олова, ниобия, тантала частично осаждает ионы лития, бериллия, магния, бария, радия, титана, циркония, гафния, тория, марганца, кобальта, никеля, ртути, таллия и свинца. При некоторых условиях осаждаются также ванадий и вольфрам. При pH 3—4 полностью осаждаются ионы кальция, стронция, скандия, иттрия, лантана, редкоземельных элементов, актиния, тория и золота неполностью осаждаются ионы бария, тантала, марганца, кобальта, никеля, меди, серебра, цинка, кадмия, олова, свинца и висмута. [c.98]


    Более подробные сведения по всем рассмотренным в книге вопросам учащиеся могут найти в литературе, список которой приведен в конце книги, а также в серии монографий, вышедших в издательстве- Наука и посвященных аналитической химии отдельных элементов алюминия, кобальта, никеля, цинка, кадмия, олова, циркония, гафния, ниобия, тантала, вольфрама, молибдена, рения, редкоземельных элементов, иттрия, индия, галлия, таллия, кремния, азота п серы. [c.4]

    Ионы, образующие растворимые комплексные соединения ограничены прерывистыми жирными линиями. В отсутствие кислоты ТН +, 5с + и Се также образуют комплексные анио-нк в присутствии же кислоты комплексные соединения их разрушаются с образованием осадка оксалатов этих катионов (оксалатные комплексы циркония, гафния, олова, ниобия и тантала устойчивы даже в кислой среде). [c.27]

    Бибер и Вечержа [373] и независимо от них Маджумдар и Чоудху-ри [728] предложили весовой метод определения шестивалентного урана осаждением с помощью купферона. Количественное осаждение имеет место при pH в пределах 4—9. Вследствие более высоких значений pH осаждения мешающее влияние других элементов в данном случае оказалось значительно большим, чем при осаждении четырехвалентного урана. Однако теми же авторами [373, 728] было показано, что применение комплексона III позволяет устранить мешающее влияние подавляющего большинства элементов. В этих условиях полностью остаются в растворе щелочные и щелочноземельные элементы, Mg, Ag, Hg, РЬ, Си, Сё, Мп, Zn, Со, Ni, В1, Ре, Ое, 5п, ТЬ, Ьа, Се и редкоземельные элементы. Определению также не мешают небольшие количества титана (IV) и циркония. Мешающее влияние алюминия, сурьмы (III), олова (IV), ниобия и тантала устраняют прибавлением винной кислоты. Присутствие [c.71]

    Следует отметить, что спектральный анализ позволил также установить отсутствие в золе шунгита следующих элементов бария, висмута, вольфрама, бериллия, галлпя, герматшя, индия, итрия, лантана, лития, ниобия, олова, ртути, стронция и тантала. [c.18]

    Пирролидиндитиокарбаминат аммония. Б присутствии 0,2%-ного раствора реагента в хлороформе при pH да 1 практически полностью экстрагируются железо, кобальт, никель, медь, ванадий, мышьяк, сурьма, олово и свинец. Медь, сурьма и олово количественно извлекаются даже из 6 н. раствора НС1. Из 8—10 н. раствора НС1, а также из оксалатных и тартратных растворов при pH = 4 ч- 5 количественно экстрагируется также ниобий. [c.141]

    Условия осаждения ионов уранила аммиаком аналогичны условиям осаждения бериллия [И]. Комплексон не оказывает влияния на полноту выделения диураната аммония . Применяемый для осаждения аммиак не должен содержать карбоната аммония. Поэтому лучше получать раствор аммиака непосредственно в лаборатории пропусканием газа из баллона в дистиллированную прокипяченную воду и предохранять раствор по мере возможности от влияния углекислого газа воздуха. Мешающее влияние комплексона, выражающееся в медленном выделении диураната, наблюдалось только при большой концентрации хлорида аммония. Сульфаты и нитраты не мешают. Определение урана можно проводить однократным или двукратным осаждением в присутствии почти всех элементов. Определению мешает присутствие титана и бериллия, а также ниобия, сурьмы и олова. Вольфраматы образуют с ионом уранила нерастворимый вольфрамат, уранила ТТОд ЗWOз 5НаО. Однако небольшие количества вольфрама определению не мешают. Аналогично ведет себя и молибден. При двукратном осаждении получаются удовлетворительные результаты. Из анионов мешают фосфат-, арсенит- и арсенат-ионы. При анализе руд и минералов большинство мешающих элементов удаляется в основных операциях хода анализа (олово, сурьма и вольфрам при выпаривании с кислотами, остальные выделяются сероводородом). Определение ура)ш можно проводить в присутствии тория, лантана и других редкоземельных металлов. [c.117]

    Исследования Алимарина и Фрид показали, что фениларсо-новая кислота, кроме циркония, количественно осаждает также гафний, ниобий, тантал и олово (в виннокислом растворе). Поэтому ряд производных фениларсоновой кислоты, например л -нитрофениларсоновую кислоту и 4-диметиламиноазобензол-4 -арсоновую кислоту, предложено использовать в качестве реактивов на [c.100]

    Таннин в присутствии трплона Б количественно осаждает ниобий, тантал, а также титан, олово и сурьму в растворе остаются А1, Ге, Ве, гг, V, Сг, Ми, П, ТЬ. [c.310]

    В книге содержатся оригинальные данные о структуре и свойствах сплавов на основе циркония. Впервые представлены циркониевые углы диаграмм состояния 25 тройных систем циркония с важнейшими легирующими элементами алюминием, бериллием, ванадием, железом, кремнием, мед .10, молибденом, ниобием, оловом, хромом и др. Приведены данные по коррозионной стойкости в воде высоких параметров, углекислом газе, на воздухе, а также по механическим свойствам при 400—700 двойных, 1ро11-пых VI более сложных сплавов циркония с указанными выше элеме1ггами. [c.2]

    Кривые состав — твердость для закаленных с 1000° сплавов двух других разрезов (Nb Fe=l l и Nb Fe=l 3) в области однородного -твердого раствора имеют резкое повышение твердости до 500— 525 кГ1мм при 3 вес.% Nb-fFe. Кривые состав—-твердость образуют как бы ступеньку со слабо выраженным максимумом при 3 вес.% Nb + + Fe. Ход кривых твердости для сплавов обоих разрезов в процессе отпуска показывает, что это повышение твердости не связано с образованием со-фазы, поскольку сплавы, расположенные за подъемами твердости, не подвергаются упрочнению в процессе отпуска, т. е. со-фаза отпуска не образуется. Закономерно предположить, что в данном случае резкий подъем твердости вызван образованием в процессе закалки а -фазы. В тройных сплавах на основе циркония, легированных небольшими добавками молибдена и олова (3—4 атомн. % Mo-bSn), также наблюдается резкий подъем твердости после закалки с 900° 3], который авторы связывают с образованием а -фазы. Аналогичная картина наблюдается и на сплавах системы Zr — Та, богатых цирконием i[4]. Однако для полного подтверждения связи подъема твердости в системе цирконий— ниобий — железо с образованием а -фазы следует провести рентгенографический анализ закаленных и отпущенных сплавов. В заключение следует отметить тот факт, что образование со-фазы после закалки в тройной системе происходит при более низком содержании ниобия, чем в двойных сплавах циркония с ниобием, хотя железо не является стабилизатором zr. FIo содержанию ниобия этот сдвиг составляет около 3,8 вес.%, поскольку по данным работы [5] со-фаза в системе Zr— Nb возникает при 7 атомн.% ниобия. [c.121]

    С фенилфлуороном реагируют также титан, цирконий, гафний, олово ( V), ниобий, тантал, сурьма (III), теллур, молибден, вольфрам. Окислители ванадий (V),xpoM (VI), марганец (VII) и церий (IV) окисляют реагент. Поны галлия и мышьяка в кислых раствора.ч не реагируют с фенилфлуороном. Не мешают определению фторид (<1 м-г в 10 мл) и железо (III) (100 мкг в 10 мл). [c.381]

    Содержание Т. в земной коре 2,5-10- % по массе. Встречается в природе обычно вместе с ЫЬ. Входит в состав неск. десятков минералов, представляющих собой тантало-нио-баты или титано-тантало-ниобаты. Важнейшие из них-колумбит-танталит и пирохлор (см. Ниобий), микролит-разновидность пирохлора с содержанием 55-74% 7 20 . Т. содержится также в касситерите (см. Олово), при переработке к-рого Т. переходит в шлаки восстановит, плавки (11-15%, иногда до 30% ТазОз). Месторождения Т. имеются в Нигерии, Канаде, Бразилии, СНГ, Австралии, Заире, Малайзии, Мозамбике и Таиланде. Общие мировые запасы Т. в 1980 оценивались в 254 тыс. т, в пром. месторождениях-ок. 65, 3 тыс. т. [c.494]

    Современные твердофазные материалы исключительно многообразны по составу /И охватывают практически все элементы периодической системы. Как правило, материалы имеют сложный состав, включая три и более химических элемента. Из простых веществ в качестве материалов используют в основном алюминии, медь, углерод, кремний, германий, титан, никель, свинец, серебро, золото, тантал, молибден, платиновые металлы. Материалы на основе бинарных соединений также сравнительно немногочисленны. Среди них наиболее известны фториды, карбиды и нитриды переходных металлов, полупроводники типа халькоге-нидов цинка, кадмия и ртути, сплавы кобальта с лантаноидами, обладающие крайне высокой магнитной энергией, и сверхпровод-никовые сплавы ниобия с оловом, цирконием или титаном. Намного более распространены сложные по составу материалы. В последнее время нередко в химической литературе можно встретить твердофазные композиции, содержащие в своем составе свыше 10 химических элементов. [c.134]

    Катализаторы, кроме кобальта и железа, содержат также металлы от V до VIII группы периодической системы Элементов — ванадий, молибден, вольфрам, ниобий, тантал, хром, марганец или их окиси свинец, олово, цинк, кадмий и твердые окиси неметаллов V группы (фосфор, мышьяк, сурьма) катализаторы обрабатывают водородом при 200°, а также сероводородом, селеноводоролом, сероуглеродом, ио-дистым водородом, например активный уголь пропитывают молибдатом аммония, азотнокислым свинцом и фосфорной кислотой и обрабатывают при 300° сероводородом или уголь пропитывают вольфраматом аммония, нитратом кобальта и пятиокисью сурьмы и обрабатывают сероводородом при 350° наконец, уголь можно пропитывать ванадатом аммония, азотнокислым кобальтом и фосфорной кислотой и нагревать при 350° с водородом и сероуглеродом в катализаторе может также содержаться окись урана [c.359]

    М по Н2804 и 0,1 М по Н2С2О4. Для экстракции использовали 0,1 М раствор БФГА в бензоле. По литературным сведениям, из сильнокислых сред бензольным раствором БФГА экстрагируются КЬ, Ъх, Н , Т1 (IV), Та, 8Ь (III), Зн (II) и 8н (IV). Нами установлено, что при экстракции протактиния с БФГА из растворов 3,5 М серной кислоты протактиний извлекается полностью в присутствии больших количеств алюминия, железа, тория, урана, висмута, олова, титана (III), редкоземельных элементов и др. Перечисленные элементы не экстрагируются в этих условиях. В присутствии весовых количеств Мо(У1), КЬ, У(У), Т1(1У) и ЗЬ(1П) экстракция протактиния сильно ухудшается. Применение щавелевой кислоты в этом случае также полезно для ослабления влияния этих элементов на экстракцию протактиния и подавления извлечения ниобия и циркония. Следует отметить, что вводимые количества щавелевой кислоты должны быть близки по стехиометрии к содержанию циркония и ниобия, так как большой избыток Н2С2О4 снижает экстракцию протактиния. Причем снижение степени извлечения протактиния находится в линейной зависимости от концентрации щавелевой кислоты. Как оказалось, после введения щавелевой кислоты в растворы, содержащие цирконий, в процессе встряхивания в водной фазе выпадает осадок. В состав этого осадка, кроме БФГА и циркония, по-видимому, входит и щавелевая кислота. [c.67]

    Применение атмосферы аргона и кислорода дает хорошие результаты также в сочетании с дугой переменного тока. Сравнивались результаты определения ряда элементов в графите при испарении в атмосфере воздуха и смеси 75% аргона с 25% кислорода. Использовали дугу переменного тока силой 8—16 А. Пределы обнаружения бора, бериллия, германия, кальция, магния, титана и цинка в графитовой основе и бериллия, кадмия, железа, германия, марганца, ниобия и титана в основе графит-Ь -Ькарбонат лития в 2—10 раз ниже в атмосфере аргона с кислородом, чем в воздухе. В основе графит + фторид лития (3 1) пределы обнаружения бора, бериллия, германия, кадмия, марганца, ниобия и цинка в 2—5 раз ниже в атмосфере аргона с кислородом, чем в воздухе. Зато предел обнаружения олова во всех матрицах при анализе в воздухе в 5 раз ниже, чем в смеси аргона с кислородом. Точность анализа в атмосфере аргона и кислорода несколько лучше, чем в воздухе. Но не для всех элементов оптимальное соотношение аргон кислород было 75 25. Так, максимальное значение /л//ф при определении магния и хрома в графите получено в атмосфере 40% аргон-ЬбО% кислорода, а при определении хрома и железа в основе графит + -[-карбокат лития — в атмосфере чистого аргона. Таким образом, состав 75% аргона-f 25% кислорода является компромиссным. Авторами исследованы также смеси гелия с кислородом (70—100% Не+ЗО—0% Ог). При этом столкнулись со следую-шими трудностями. Большое различие в плотности гелия и кислорода затрудняет смешение их в контролируемых условиях. Кроме того, при содержании, в смеси 30% кислорода электроды горели очень интенсивно, как будто кислорода было гораздо больше. Поэтому от гелия отказались, хотя характеристики у гелия и аргона близкие [236]. [c.128]

    КИСЛОТОСТОЙКИЕ МАТЕРИАЛЫ — материалы, отличающиеся повышенной кислотостойкостью, вид химически стойких материалов. В пром. масштабах используются с середины 18 в. Различают К. м. металлические и неметаллические. К металлическим К. м. относятся сплавы на основе железа, а также цветные металлы и их сплавы (см. также Кислотостойкие сплавы). Кислотостойкие сплавы на основе железа углеродистые стам (нелегированные, низколегированные), содержащие до 1% С высоколегированные стали, имеющие в своем составе хром, никель, медь, марганец, титан и др. хим. элементы чугуны (нелегированные, высоколегированные), содержащие более 2,5—2,8% С. Кислотостойкие цветные металлы никель, медь, алюминий, титан, цирконий, олово, свинец, серебро, ниобий, тантал, золото, платина и др. Углеродистые стали стойки в растворах холодной азотной к-ты (концентрация 80—95%), серной к-ты (выше 65%) до т-ры 80° С, в плавиковой к-те (выше 65%), а также в смесях азотной и серной к-т. На углеродистые стали сильно действуют органические к-ты (адипиновая, муравьиная, карболовая, уксусная, щавелевая), особенно с повышением их т-ры. Высоколегированные стали, отличаясь повышенной стойкостью к коррозии металлов (см. также Коррозионностойкие материалы), являются в то же время кислотостойкими. Большинство легирующих добавок значительно повышают кислотостойкость сталей. Так, медь придает хромоникелевым сталям повышенную стойкость к серной к-те. Сталь с 17—19% Сг, 8-10% Мп, 0,75-1% Си, 0,1% С и 0,2—0,5% Si стойка в азотной к-те (любой концентрации и т-ры вплоть до т-ры кипения) и многих др. хим. соединениях (см. Кислотостойкая сталь). Кислотостойки высоколегированные чугуны никелевые, хромистые (см. Хромистый чугун), алюминиевые (см. Чугалъ), высококремнистые (ферросилиды), хромоникель-медистые (см. Нирезист), хромони-келькремнистые (никросилал). Наиболее распространены ферросилиды [c.586]


Смотреть страницы где упоминается термин Ниобий также Ниобий от олова: [c.19]    [c.139]    [c.75]    [c.15]    [c.209]    [c.83]    [c.304]    [c.53]    [c.63]    [c.157]    [c.110]    [c.207]    [c.276]    [c.455]    [c.628]    [c.796]    [c.815]    [c.346]   
Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.742 ]




ПОИСК







© 2024 chem21.info Реклама на сайте