Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никотин биосинтез

    Гетероциклические ядра составляют основу для построения многочисленных гомологических рядов, содержащих углеводородные остатки в виде боковых цепей, а также всевозможные функциональные группы. К гетероциклическим соединениям относятся, кроме упомянутых, также многие другие важные природные вещества. Это, например, алкалоиды — азотсодержащие растительные физиологически активные вещества. Среди них есть и сильные яды (стрихнин, никотин), и важные лекарственные препараты (хинин, резерпин). Гетероциклические ядра составляют основу многих антибиотиков, например пенициллина, тетрациклина витаминов. (витамины группы В п др.). Пуриновые и пиримидиновые основания входят в состав нуклеиновых кислот — материальных носителей наследственности, играющих важнейшую роль в процессах биосинтеза белков. [c.340]


    Дальнейшим подтверждением пути биосинтеза, приведенного на схеме (9), явился тот факт [41], что Л -метил-А -пирролин (12) является интактным предшественником никотина (метка из С-2 предшественника переходит к С-2 алкалоида). Более того, меченое соединение (12) было выделено из продуктов метаболизма растений после введения, например, радиоактивного орнитина [c.548]

    Химический контроль. Известно, что многие вещества стимулируют или подавляют синтез каротиноидов или вызывают качественные изменения в их составе у микроорганизмов. Некоторые из таких соединений, например дифениламин и никотин, широко использовались в исследованиях биосинтеза каротиноидов (разд. 2.6.4 и 2.6.5). [c.80]

    Местом образования никотина служат корни табачного растения. На биосинтез алкалоида тратится более 10 % всей энергии, запасаемой в результате фотосинтеза. Такая трата вполне оправдана, так как, транспортируясь в листья, алкалоид делает их несъедобными для колорадского жука. Хорошо известно, что ближний родственник табака картофель беззащитен перед этим вредителем. Однако, если привить его на табачную корневую систему, то поступающий из нее никотин надежно защищает картофельные листья от уничтожения насекомыми. [c.460]

    Многие азотсодержащие гетероциклические производные, преимущественно растительного происхождения, относятся к важному классу природных соединений, называемых алкалоидами. Пути биосинтеза алкалоидов и их биологическая роль до конца не выяснены. Они могут находиться в любой части растений, например, опий содержится в семенах, никотин — в листьях, аконит — в клубнях, хинин — в коре и т. д. Содержание алкалоидов в растениях, в которых они находятся преимущественно в виде органических или минеральных солей, невелико, обычно 1—2% однако в некоторых растениях (например, хинное дерево) их содержание поднимается до 10—15%. В большинстве случаев алкалоиды представляют собой кристаллические соединения они оптически активны и вращают плоскость поляризации света преимущественно влево. В настоящее время известно свыше 1000 алкалоидов, но строение установлено далеко не у всех. В СССР много исследований по выделению и определению [c.589]

    Биосинтез соединений, содержащих никотиновую кислоту, у зеленых растений и большинства бактерий идет по пути, отличному от пути биосинтеза этих соединений у животных. Биосинтез никотиновой кислоты у высших растений был выяснен в процессе изучения биосинтеза алкалоидов никотина [62], рицинина [169] и анабазина [266]. Было установлено, что никотиновая кислота может служить предшественником пиридинового кольца для каждого из этих соединений  [c.231]


    Первым открытым нуклеотидным коферментом был никотин-амидадениндинуклеотид (NAD+, 10), который был обнаружен в начале XX века Харденом и Янчом как температурно-стабильный кофактор спиртовой ферментации. Вслед за развитием метода радиоактивных меток и техникой мягкого выделения (например, ионообменная хроматография) были обнаружены многие другие коферменты [7]. Они принимают участие в биологических реакциях окисления-восстановления, переноса групп, в реакциях синтеза полимеров. Эти коферменты будут обсуждены в настоящей главе более детально позднее. Другие же важные встречающиеся в природе эфиры фосфорной кислоты, такие как составляющие клеточных мембран (фосфолипиды и техоевые кислоты) или участвующие в биосинтезе природных соединений (таких, как терпены или стероиды) здесь обсуждаться не будут, но будут рассмотрены в других главах, посвященных природным продуктам. [c.134]

    Вероятным, хотя и не доказанным, промежуточным соединением в биосинтезе тропановых алкалоидов является соль Л -метил-Д -пирролиния (12). Установлено, что последняя выполняет роль предшественника в синтезе никотина (см. ниже), а 1п иНго реагирует с ацетоуксусной кислотой, образуя гигрин (2) [21] [ср. схему 2, кокаин (16) также может синтезироваться этим путем, но без потери карбоксильной группы]. В соответствии с этой гипотезой (см. схему 4) ацетат (в виде ацетоацетата) является вторым специфическим предшественником гигрина (2), кускогигрина (14) и гиосциамина (15) справедливость гипотезы была подтверждена с помощью меченых соединений, что позволило локализовать места включения меток [19, 22, 23]. [c.545]

    Примером пирролизидиновых алкалоидов может служить се-неционин (44). Установлено, что основной элемент его структуры, ретронецин (43), образуется из орнитина (1) (а также из его предшественника аргинина [49]) (схема 12) в этом сходятся результаты, полученные различными группами исследователей. Однако в работах одной группы показано, что образование алкалоидов из орнитина идет через несимметричное промежуточное соединение [50], в работах другой — через симметричное, по меньшей мере для одного цикла [51] (ср. приведенное выше обсуждение биосинтеза никотина объяснение может быть аналогичным). Для выяснения и уточнения биосинтеза ретронецина, очевидно, необходимы дальнейшие исследования. [c.550]

    Пути биосинтеза кониина и пинидина представляют собой исключение из общих правил биогенеза алкалоидов. Предполагаемый путь биосинтеза Л -метилпельтьерина (70) более типичен для пиперидиновых алкалоидов, так как в нем важную роль играет аминокислота лизин (68). Различные данные указывают на сходство путей биосинтеза Л -метилпельтьерина, седамина (72) и аналога никотина, анабазина (71) поэтому целесообразно рассмотреть одновременно образование всех трех алкалоидов. [c.555]

    Биосинтез пиридиновых алкалоидов никотина (35), анабазина (71) и анатабина (91) был рассмотрен выше (см. разд. 30.1.2.2 30.1.3.1 и 30.1.3.2). Известно, что пиридиновое кольцо в каждом из этих алкалоидов образуется из никотиновой кислоты. Точно так же формируется и тетрагидропиридиновое кольцо анатабина (91). Этим, как уже отмечалось, анатабин резко отличается от анабазина, сходный фрагмент структуры которого синтезируется из лизина. [c.568]

    Пиридиновое кольцо играет ключевую роль в некоторых биологических процессах, наиболее важные из них — окислительно-восстановительные процессы с участием кофермента никотинамидадениндинуклеотида (ЫАОР). Витамин ниацин (никотинамид) или соответствующая кислота необходимы для биосинтеза КАОР. Пиридоксин (витамин Вб) играет важную роль как кофермент в трансаминировании. Высокотоксичный алкалоид никотин — основной активный компонент табака, наркотик, обладающий наибольшим из известных эффектов привыкания [1]. [c.104]

    Никотин, один из главных алкалоидов табачных листьев, имеет строение XXIV. При исследовании биосинтеза никотина в табачных растениях было установлено, что пиридиновое ядро в процессе биосинтеза возникает в виде никотиновой кислоты [c.324]

    Несмотря на большое число исследований, точный путь биосинтеза никотина неизвестен. Наиболее обоснована схема, по которой молекула 6.137 образуется из никотиновой кислоты и пирролиниевого иона 6.95 (разд. 4.1, схема 111) через промежуточное соединение 6.140. Это третий путь биосинтеза пиридиновых природных веществ  [c.459]

    Было показано, что у растения Datura stramonium L. широко распространенная аминокислота орнитин включается в процессе биосинтеза в гиосциамин, как этого и следовало ожидать на основании результатов, полученных при исследовании биосинтеза пирролидинового кольца никотина. При подкормке 2-С -орнитином образуется гиосциамин с меченым углеродным атомом в голове моста [37, 47]. [c.316]

    Меченые атомы в органические соединения можно вводить либо химическими, либо биологическими методами. Например, меченую никотиновую кислоту можно получать как путем химических реакций 15], так и при помощи биологических процессов. В последнем случае табак выращивают в атмосфере Ю2 и из растения экстрагируют никотин, который затем окисляют до никотиновой кислоты. Следующие факторы ограничивают эффективность биологического метода 1) неизбежные потери радиоактивного изотопа вследствие реакций элиминирования, происходящих в процессах обмена веществ 2) возможный биосинтез побочных соединений 3) нежелательное разбавление меченого соединения немеченым, которое присутствует в организме 4) биосинтез соединения, меченного изотопом с коротким периодом полураспада, не всегда возможен ввиду фактора времени 5) выделение меченого соединения из сложной биологической системы обычно затруднительно 6) некоторые соединения синтезируются живыми организмами очень медленно или только лишь на определенных стадиях своего развития. Очевидно также, что слишком большая радиоактивность может привести к гибели организма. Вообще к биологическому синтезу следует прибегать лишь в тех случаях, когда меченое соединение невозможно получить иным методом. Несмотря на эти недостатки, биосинтез-привлекает большое внимание. Отделение изотопов Ок-Риджской национальной лаборатории в 1950 г. опубликовало отчет о биологическом методе введения меченых атомов в органические соединения. В отчете имеются данные о большом числе органических соединений, которые были уже получены или могут быть получены в будущем путем биосинтеза. [c.312]


    Интенсивно используя традиционные генно-инженерные подходы, можно добиться повышения качественных и потребительских свойств сельскохозяйственной продукции. Ведутся работы и получены обнадеживающие результаты по созданию кофе без кофеина, табака без никотина, арахиса, не содержащего характерных для него аллергенов. Большой резонанс в обществе вызвала разработка швейцарских ученых, посвященная созданию так называемого золотого риса. Им удалось пол) ить и перенести в растения риса генетическую конструкцию, содержащую сразу три гена от разных организмов, необходимых для биосинтеза каротина (провитамина А) гены фитоендеса-туразы и ликопин р-циклазы от нарцисса и ген каротиндесатуразы от бактерий. В результате растения риса приобрели способность синтезировать каротин, концентрация которого в зерне достигала 1,6—2 микрограммов на грамм сырой массы. Конечно, этого недостаточно, чтобы в полной мере решить проблему ослабленного зрения детей Юго-Восточной Азии, вызванную дефицитом витамина А в продуктах питания. Для этого детям 4 — 6 лет необходимо ежедневно съедать порядка 1,2 килограмма золотого риса , что нереально. Тем не менее первый шаг в этом направлении сделан, и полученные результаты действительно открывают широкие перспективы в решении данной проблемы. [c.56]

    Исследования показали, что алкалоиды играют определенную роль в обмене веществ растений. Так, с накоплением в табаке белков содержание никотина уменьшается. Установлена тесная связь между интенсивностью роста растения табака, его азотным питанием и образованием никотина. С помощью изотопного метода обнаружено, что алкалоид горденин, накапливающийся в проростках ячменя, по мере развития и созревания растений постепенно исчезает, превращаясь в лигнин. Доказано, что исходнымн продуктами для биосинтеза алкалоидов являются аминокислоты. Так, при подкормке растений махорки орнитином значительная часть радиоактивного углерода этой аминокислоты обнаруживается в пирролидиновом кольце никотина. [c.388]


Смотреть страницы где упоминается термин Никотин биосинтез: [c.487]    [c.544]    [c.548]    [c.549]    [c.556]    [c.24]    [c.410]    [c.311]    [c.233]    [c.399]    [c.15]   
Биохимия растений (1968) -- [ c.231 ]




ПОИСК





Смотрите так же термины и статьи:

Никотин



© 2025 chem21.info Реклама на сайте