Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры основные реакции синтеза

    Поскольку скорость побочных реакций обычно мала по сравнению со скоростью основной реакции синтеза полимера, доля инородных свя--зей также невелика, но все же зти связи влияют на свойства полимера и особенно на его стойкость к деструкции. Известно, например, что углерод-углеродная связь стойка к гидролизу, поэтому и карбоцепные полимеры также должны обладать этим свойством. Однако многие из них гидролизуются при действии водных кислот и щелочей, причем молекулярная масса понижается только в первый момент, а затем при длительном воздействии остается постоянной. Это следует объяснить наличием в макромолекулах карбоцепного полимера связей углерод— гетероатом, возникших в результате побочных реакций при синтезе полимера. При этом вследствие макромолекулярного характера реакции деструкции полимеров достаточно разрыва 0,001—0,01 доли связей для того, чтобы молекулярная масса полимера снизилась в несколько раз. [c.297]


    Рассматриваются основные реакции синтеза органических полимеров поликонденсация различных поли-функциональных веществ, полимеризация виниловых мономеров по свободно-радикальному и ионному механизмам и сополимеризация этих мономеров рассматриваются также полимеризация и сополимеризация сопряженных и несопряженных диенов. В книге описаны некоторые свойства полимеров, а также отдельные реакции функциональных групп макромолекул. [c.4]

    При получении изопропилбензола на макропористых полимерах наряду с основной реакцией имеет место димеризация пропилена, а при получении трег-бутилбензола наблюдается олигомеризация олефина. При синтезе высших алкилбензолов скорость алкилирования падает с увеличением цепи олефина. [c.26]

    Основные закономерности протекания ступенчатых реакций синтеза полимеров существенно отличаются от закономерностей цепных реакций. Два важных фактора определяют размер и структуру образующихся макромолекул полимера стехиометрия (если число компонентов больше одного) и степень завершенности реакции по расходу функциональных групп реагирующих компонентов. [c.72]

    Сформулируем основные особенности ступенчатых реакций синтеза полимеров и рассмотрим факторы, влияющие на них. [c.76]

    Механизмом реакций синтеза полимера, как мы видели, определяются его структура и основные свойства. Большое значение имеет также и используемое промышленностью техническое решение, по которому реализуется реакция синтеза полимера. Таких решений для одного и того же механизма реакции синтеза может быть несколько. [c.80]

    В зависимости от состава основной цепи полимерные соединения делят на карбоцепные, гетероцепные и элементорганические. По форме макромолекул и порядку расположения валентных связей различают полимеры линейные, разветвленные и пространственные. Особенности указанных полимеров были рассмотрены в разделе 1 (стр. 7). По методам синтеза принято делить полимерные соединения на две группы полимеры, получаемые реакцией полимеризации полимеры, получаемые реакцией поликонденсации и ступенчатой полимеризации (стр. 33). По тому, как полимерные соединения ведут себя при нагревании, их делят на термопластичные и термореактивные. [c.26]

    В большинстве случаев основная реакция сопровождается побочными реакциями, которые часто сопутствуют и процессам синтеза полимеров. Так как продукты побочных реакций также входят в состав мо- [c.296]


    Характерной чертой молекулярной структуры ПЭВД, отличающей его от всех ныне известных синтетических полимеризационных полимеров, является сильно развитая ДЦР. Это вызвано тем, что условия синтеза ПЭВД, обеспечивающие получение полимера достаточно высокой степени полимеризации, весьма благоприятны для реакций передачи цепи на полимер (см. гл. 4). Основной реакцией, приводящей к образованию длинных ветвей в макромолекуле ПЭВД, является реакция межмолекулярной передачи цепи. Возможно возникновение ДЦР и вследствие внутримолекулярной передачи цепи, когда происходит отрыв водорода от атома С макрорадикала, гораздо более далекого, чем 5-й. Однако вероятность этой реакции очень мала. [c.123]

    Дальнейшая каталитическая переработка углеводородов на металлических и оксидных катализаторах позволяет получать полупродукты, необходимые в производстве предметов народного потребления [2, 5—9]. Большая часть мономеров и полученных из них полимеров являются продуктами каталитических процессов переработки углеводородов и их производных, полученных из нефти, угля, сланца, природного газа. Каталитические процессы играют важную роль в производстве моющих средств, красителей, лекарственных веществ. Основной органический синтез, дающий полупродукты (и продукты органической технологии), базируется в основном на каталитических реакциях [10, 11]. [c.9]

    Методы полимеризации освещены (глава 2) в данной монографии потому, что карбоцепные полимеры получают преимущественно полимеризацией в то время как поликонденсация применяется в основном при синтезе гетероцепных полимеров. Имеются, однако, и исключения из этого правила, вследствие чего такие практически важные полимеры как фенолформальдегидные смолы и поликапролактам попадают не в тот том, в котором находится глава, посвященная механизму реакции их образования. [c.7]

    Каждый из этих основных путей синтеза полимеров известен в настоящее время в нескольких вариантах, которые отличаются друг от друга вследствие различий в строении исходных мономеров, природе инициаторов или катализаторов, а также по способам проведения реакции. [c.134]

    Аддитивная сополимеризация виниловых мономеров с ненасыщенными полиэфирами по двойным связям также приводит к получению привитых сополимеров, но несколько усложненной структуры [80—82]. Хотя процесс аддитивной сополимеризации протекает при более низких температурах и концентрациях полимера, чем реакции передачи цепи, он часто осложняется образованием геля и реакциями передачи цепи. За исключением тех случаев, когда двойные связи расположены на концах цепи (как, например, в полимерах, при синтезе которых основной реакцией обрыва является диспропор-ционирование), механизм реакции прививки часто остается неясным и реакция обычно приводит к получению привитых сополимеров со сложной структурой. Это может быть результатом активации атомов водорода в а-положении по отношению к двойной связи в основной цепи. [c.19]

    П. р. — один из основных методов синтеза а-окисей (см. Дарзана реакция)-, ее используют при окислении масел и жирных к-т, которые широко применяют как пластификаторы ц,пп поливинилхлорида и других хлорированных полимеров, для количественного определения двойных связей в непредельных углеводородах. [c.164]

    При эмульсионной поликонденсации (рис. 1) охлажденный до 5—10° С водный содовый раствор л<-фенилендиамина (МФДА) смешивают с раствором дихлорангидрида изофталевой кислоты (ХАИК) в тетрагидрофуране (ТГФ). Основная реакция синтеза полимера протекает в органической фазе образовавшейся эмульсионной системы, а нейтрализация образующегося побочного продукта— хлористого водорода — происходит в водной фазе. Продолжительность синтеза обычно не превышает 1 мин. После осаждения [c.326]

    В XIX столетии открытия в области синтеза высокомолекулярных соединений были случайны и эпизодичны. Именно так можно рассматривать проведенное Ренье в 1835 г. превращение хлористого винила под действием света в вещество, отличное от обычных низкомолекулярных органических соединений. Гораздо позднее этот опыт стали рассматривать как один из первых синтезов полимерного соединения. Термин полимер был впервые введен Берцелиусом в 1833 г. применительно к веществам одинакового состава, но различного молекулярного веса. Однако полимеризация еще долгое время рассматривалась как феномен, а не как одна из основных реакций синтеза высокомолекулярных соединений. [c.11]

    В основе технологии синтеза высокомолекулярных соединений лежат полимеризационный и поли-конденсационный методы получения полимеров. Эти методы различаются как по механизму основной реакции, так и по строению образующихся полимеров. Полимеризацией мономеров с непредельными связями или циклами под действием катализаторов, инициаторов или других факторов получают полимеры, звенья которых по элементному составу соответствуют мономеру. Поликондеп-сацией соединений с реакционноспособными функциональными группами получают полимеры,, звенья которых отличаются по составу от исходного мономера. Поэтому выделяют два больших класса синтетических высокомолекулярных соединений — по-лимеризационные и поликонденсационные. Естественно, что и технология их получения различна. [c.4]


    Нейтральные метакрилаты служат исходным сырьем для второй основной стадии синтеза — полимеризации. Реакция полимеризации метакрилатов осуществляется непрерывно в аппарате 11 в присутствии инициатора перекисного типа и растворителя. Полученный полимеризат непрерывно стекает в смеситель 12, куда загружается нефтяное масло в количестве, обеспечивающем получение 60—70 %-ных полимер-концентратов в масле — товарных присадок. Отгонка толуола и непрореагировавших мономеров осуществляется непрерывно в пленочном роторном испарителе 15. Из смесителя 12 раствор полимеризата в масле насосом через фильтр 13 подают в верх роторного пленочного испарителя 15. Пары толуола и непрореагировавших мономеров выходят с верха испарителя и поступают в холодильник 16, а затем в емкость. Готовый продукт — раствор полимера в масле — с ннза испарителя поступает в емкость 14, а затем через монжус /7 — в резервуары готовой продукции. [c.245]

    В качестве исходных веществ для получения полимеров используют ненасыщенные пли полифункциональные низкомолеку лярные соединения (мономеры). Основными методами синтеза полимеров являются реакции полимеризации и поликонденсации. Полимеризацией называется реакция соединения молекул моноч мера, в результате которой образуются макромолекулы, не отличающиеся по составу от исходного мономера. Эта реакция на сопровождается выделением побочных продуктов. Типичным при< мером является образование полиэтилена из этилена  [c.305]

    ГИДРАТАЦИЯ И ДЕГИДРАТАЦИЯ КАТАЛИТИЧЕСКИЕ —реакции присоединения (гидратация) или отщепления (дегидратация) воды от органических соединений. Г. и Д. к.— одни из основных реакций органической химии. Основными видами реакций гидратации являются гидратация олефинов в спирты, ацетиленовых углеводородов в альдегиды и кетоны, нитрилов в амиды. На этих реакциях основываются промышленные способы производства важнейших продуктов органического синтеза. Реакции дегидратации составляют основу большинства реакций поликонден-сацин, играющих огромную роль при получении полимеров, алкидных или гли-фталевых смол, полиамидных волокон (найлона), мочевиноформальдегидных смол 1 др. [c.72]

    В последние два десятилетия интенсивно развивается новая область химии высокохмолекулярных соединений — синтез и исследование органических полимеров, основная цепь которых представляет собой систему сопряженных кратных связей, в частности связей С = Ы. Интерес к подобным полимерам объясняется некоторыми их специфическими свойствами, такими, как термостойкость, электропроводность, каталитическая активность в ряде реакций и др., которые открывают полимерам такого рода определенные перспективы практического применения. [c.158]

    Получение полимеров из мономеров осуществляется в результате реакций полимеризации и поликонденсации, причем полимеризация является одним из основных методов синтеза полимеров. По способу получения все полилмеры делятся на полимеризационные и поли-конденсационные (или конденсационные). [c.328]

    Таким образом, несмотря на наличие некоторых общих черт у радикальной н ионной полимеризации как цепных реакций синтеза полимеров, где кинетическая цепь реакций активных расту1цих частиц с молекулами мономера воплощается в материальную цепь макромолекул, между ними имеются существенные различия. Прежде всего в ионной полимеризации в качестве растущей частицы действуют заряженные ионы, а в свободнорадикальной полимеризации— свободные радикалы с неспаренным электроном на атоме углерода. Ионы более активны и реакциоппоспособны. В связи с этим требуются более тщательно контролируемые условия их образования и существования. Инициирующие системы в ионной полимеризации в основном являются каталитическими, т. е. восстанавливают свою исходную структуру, а не расходуются необратимо, как в случае радикальных инициаторов. Во многих случаях катализаторы ионной полимеризации осуществляют не только химическое инициирование полимеризации, но и координируют молекулы мономера около растущих частиц. Это позволяет получать строго регулярное пространственное (стерическое) расположение звеньев мономера в цепи полимера (стереорегулярные полимеры). [c.36]

    Наряду с основной реакцией поликонденсации проходят и многочисленные побочные процессы. Они возникают вследствие многих причин, нанример в результате взаимодействия эпихлоргидрина с гидроксилом алифатической группы образовавшегося полимера [174]. Для предотвраш ения этого побочного процесса реакцию следует проводить в ш елочной среде. Однако избыток хцелочи также нежелателен, так как он приводит к гидролизу эпихлоргидрина [175] и способствует возникновению реакции полимеризации вследствие разрушения эпоксидной группы [176]. Все эти побочные реакции придают полимеру разветвленную структуру, вызывая преждевременную желатинизацию смолы или осложняя ее синтез. [c.736]

    Прежде чем начать обсуждение этих процессов, необходимо подчеркнуть, что хотя реакции копдеисации и присоединения принципиально и практически хорошо известны большинству химиков-органиков, эти же реакции, ведущие к синтезу полимеров, имеют, помимо применения полифункциоиальных мономеров, еще и то существенное отличие, что они должны протекать с очень высокими выходами. В то время как в органической химии реакция, идущая с выходом основного продукта считается превосходным препаративным методом, в случае получения высокомолекулярного полимера по-ликоденсация должна протекать с выходом, близким к 100% (за исключением реакций межфазной поликонденсации). Последние несколько процентов выхода реакции означают взаимодействие концевых групп длинных молекул между собой с образованием продукта с очеиь большим молекулярным весом. Для достижения такого эффекта необходимо, чтобы основная реакция не сопровождалась побочными реакциями, в результате которых происходит потеря концевых групп, и образованием боковых цепей, а исходные мономеры должны быть чрезвычайно чистыми. В большинстве случаев (по не всегда) при проведении поликондеисации необходимо применять исходные мономеры в строго эквимолярных количествах. [c.77]

    В частности, даны полные сведения, касающиеся физических и химических свойств изобутилена, методов синтеза и анализа мономера. Предпочтение отдается последним достижениям, связанным с использованием ионообменных смол - катионных катализаторов для реакций изобутиленового сырья со спиртами как первой стадии получения высокочистого мономера и одновременно основной реакции получения алкилтретбутиловых эфиров - экологически чистых антидетонационных добавок к топливам. Проанализированы и обсуждены данные по кинетике и термодинамике реакций, оптимизации процессов. Расширены сведения о нетрадиционном способе получения изобутилена - термокаталитической деструкцией изобутиленсодержащих и других углеводородных полимеров (олигомеров), где параллельно решается проблема утилизации нестандартных продуктов. Дополнены ранее известные данные по некоторым химическим свойствам и лабораторным методам синтеза изобутилена, обсуждены промышленные варианты процессов. [c.377]

    Наиболее обычная последовательность химических операций для проведения синтеза на твердом носителе указана на схеме (53). При этом почти исключительно используются т рет -бутоксикарбо-ниламинокислоты и полистирольные носители. Остаток первой аминокислоты присоединяется к смоле в виде замещенного бензильного сложноэфирного производного путем реакции с частично хлор-метилированным полимером. Катализируемое кислотой удаление бутоксикарбонильной группы с последующей нейтрализацией освобождает концевую аминогруппу для последующей конденсации с остатком второй аминокислоты, что выполняется обычно с помощью дициклогексилкарбодиимида. Избыток растворимых реагентов удаляют тщательной промывкой на каждой стадии, и далее следует удаление защитных групп, нейтрализация и повторное построение пептидной связи до тех пор, пока не образуется весь продукт. Отщепление материала от смолы включает разрыв бензильной сложноэфирной связи действием очень сильной кислоты, обычно безводного фтороводорода. Основные ступени синтеза на твердом носителе представлены на схеме (54). [c.406]

    Деструкция может быть вызвана окислением, автоокислеиием или гидролизом. Как и низкомолекулярные соединения, полимеры подвержены автоокислению в соответствующих условиях, особенно при повышенных температурах [21, 22]. Образующиеся в прот ессе окисления гидроперекиси обычно нестабильны при высоких температурах и разлагаются на свободные радикалы, т. е. реакция может стать автокаталитической вторичные продукты могут инициировать последующие реакции. Это в основном реакции деструкции и сшивания цепей. В промышленности эти процессы подавляют, добавляя антиоксиданты, такие, как фенолы и амины поэтому некоторые полимеры стабилизуют сразу после синтеза. Это очень важно для полидиенов, в,которых двойные связи особенно склонны вызывать автоокисление полимера. [c.247]

    Основным методом синтеза катализаторов для суспензионной полимеризации являются реакции в жидком аммиаке как наиболее универсальный способ получения органических производных щелочноземельных металлов [126]. Так, в частности, синтезируют алкоголяты и амидалкоголяты металлов, яв.ляющиеся активными катализаторами по.лимеризацип окиси этилена [127]. Способ обладает рядом преимуществ перед прямым синтезом алкоголятов пз спиртов, однако и он не приводит к абсолютно чистым и однородным продуктам, так как разложение гексааммиаката металла в растворе до амида всегда сопутствует основному процессу. Гексаамхмиакаты и амиды металлов также активны при полимеризации окиси этилена [128]. Все эти ката.лизаторы дополнительно активируются такими добавками, как нитрилы, сульфоксиды, трифенилметан, флуорен и рядом других, позволяющими одновременно регулировать молекулярную массу полимера [3, 129]. [c.264]

    Полимеризация, особенно когда речь идет о синтезе высокополимеров, является весьма многогранным и сложным процессом, который на первый взгляд не представляет особого практического интереса для химика-органика, не являющегося специалистом в этой области. Однако известны многие полезные и хорошо управляемые каталитические реакции, позволяющие получать приелйчемые выходы специфических продуктов, которые не могут быть получены при помощи других реакций. В этом разделе сравнительно подробно рассмотрен каталитический синтез димеров, тримеров и других низишх полимеров процессы же синтеза высокополимеров обсуждаются лишь в связи с основной темой. Для ознакомления с общими проблемами каталитической полимеризации можно рекомендовать специальную литературу 1613-6211.. [c.184]

    Первая из них состоит в том, что ионная полимеризация привлекала до 40—50-х годов меньше внимания исследователей и отчасти уже поэтому изучена слабее. Исторически такая несправедливость объясняется, по-видимому, следующим. Вначале во всех странах в качестве основного метода синтеза высокомолекулярных соединений исследовались процессы поликонденсации, которые очень близки к таким простым реакциям, как этерификации, амидирование и гидролиз. Следующая ступень — интенсивный экспериментальный и теоретический анализ полимеризации иод действием свободных радикалов. Широкое исследование этих процессов объясняется главным образом тем, что они могут быть проведены в гомогенных условиях, удовлетворительно воспроизводимы и приводят к образованию полимеров, которые легко можно охарактеризовать по их молекулярному весу и молекулярно-весовому распределению. По тем же иричи-нам, а также вследствие низкой стоимости и доступности многих этиленовых и диеновых мономеров, основная масса промышленных полимеров производилась путем свободнорадикального инициирования. Сфера промышленного применения ионной полимеризации ограничивалась, в основном, получением (путем низкотемпературной полимеризации) нолпизобутилена, некоторых каучуков, в частности бутилкаучука (сополимер изобутилена и [c.88]

    Основное направление научных исследований — химия ацетиленовых углеводородов. В поисках новых реакций с участием ацетилена изучил (1918—1930) действие на этот углеводород различных металлосодержащих катализаторов. Открыл (1908) реакцию полимеризации ацетилена, происходящую в водном растворе под влиянием комплексной соли одновалентной меди с образованием вещества, идентифицировать которое ему удалось лишь в 1922 как тример ацетилена — дивинилацетилен. В сотрудничестве с У. X. Карозерсом разработал способ получения винилацетилена (1931), а на его основе—хлоропрена (1932) и полимера хлоропрена (1934) — первого американского синтетического каучука неопрена. Открыл (1933) реакцию синтеза а-ацетоксикето-нов ацетилированием ацетиленовых спиртов под действием смеси уксусной кислоты, уксусного ангидрида и эфирата трехфтористого бора (реакция Ньюленда). [324] [c.369]

    Во втором томе рассматриваются важнейшие процессы нефтехимии гидрирование и дегидрирование изомеризация алкилирование и деалкилирование гидрокрекинг каталитический риформинг окисление гидратация этерифика-ция гидролиз галогенирование и дегалогенирование приводятся сведения о синтезах метанола, высших спиртов, олефинов, карбонатов, гликолей и полиглико-лей, азот- и серусодержащих соединений и др., о конденсационных и полимери-зационных процессах, получении мономеров для СК, а также о кинетике основных реакций нефтехимического синтеза, о технике безопасности и об изобретательском и патентном праве. [c.263]

    Многочисленные реакции синтеза П. с. подразделяют на два основных типа 1) взаимодействие мономера с полимером и 2) взаимодействие различных типов иолимеров или олигомеров (не менее двух) [ежду собой. В основе первого типа реакций ленам использование полимерного компонента в качестве инищштора, способного возбуждать цепную радикальную, ионную, координационно-ионную или какого-либо гина ступенчатую полимеризацию добавляемого в реакционную смесь мономера. Обычно исходный иолнме]зный компонент образует основную цепь (хребет) получаемого П. с., а полимеризующийся мономер — боковые (привитые) цепи. Создание активных центров на макромо-лекулярном компоненте может либо предшествовать его смешению с мономером, либо происходить непосредственно в ходе реакции с мономером. Возможен и иной путь, когда на первой стадии синтеза получают прививаемые цепи, содержащие двойные связи на конце, а затем их сополимеризуют с мономером, образующим основную цепь П.с. [c.98]

    С явлениями комплексообразования приходится сталкиваться при изучении ряда биологических процессов, каталитических реакций и других важных процессов. Исследование влияния комплексообразования на оптические, электромагнитные и электрофизические свойства иредставляет значительный интерес с точки зрения возможностей использования этих систем для получения эффекта стимулированного излученй я, органических полупроводниковых материалов и катализаторов в реакциях основного органического синтеза и синтеза полимеров. Поэтому изучение органических комплексов с переносом электронов (КПЭ) имеет очень большое значение. Особенно важными следует считать исследования по изучению количественного взаимодействия. [c.75]

    До последнего времени два основных способа получения высокомолекулярных веществ — П. и поликонденсацию — различали по их стехиометрии. К первому случаю относили процессы, в к-рых полимер был единственным продуктом реакции, а ко второму — процессы, сопровождающиеся выделением низкомолекулярных веществ (воды, аммиака и т. п.). Однако в результате интенсивных исследований механизма реакций синтеза высокомолекулярных соединений стало ясно, что принципиальное различие между П. и поликонденсацией лежит не в составе образующихся продуктов, а в механизме этих процессов. П.— особый тип цепных процессов, в к-ром развитие кинетич. цепи сопровождается ростом материальной цепи макромолекулы, в то время как поликонденсация представляет собой совокупность бимолекулярных реакций, кинетически не связанных друг с другом. Поэтому, нанр., реакции образования иолимеров из диазосоединений или N-кapбoк иaнгид-ридов а-аминокислот являются полимеризацией, хотя они и сопровождаются выделением соответственно азота или двуокиси углерода (см. Диазосоединений полимеризация, -Карбоксиангидридов а-аминокислот полимеризация), а синтез полиуретанов из диизоцианатов и диолов — поликонденсацией, хотя в этом процессе и не выделяется никаких низкомолекулярных продуктов. [c.440]

    Полициклотримеризация. В 70-х годах интенсивно развивается новый способ получения полимеров различной структуры, содержащих карбо- и гетероциклы в цепи, путем циклотримеризации кратных связей С—С и С—N [53]. С. В. Виноградовой и В. А. Панкратовым на примере мономеров с С—1 -кратными связями (хщанатов, цианамидов, изоцианатов и др.) изучены основные закономерности синтеза полимеров [54]. Найдены пути осуществления этой реакции высокоселективно и с практически количественной конверсией функциональных групп, что позволило получить регулярно сшитые полимеры со строго заданными расстояниями между узлами сшивки. Введением различных по структуре и размерам термически устойчивых ароматических и элементооргапических радикалов в качестве межузловых фрагментов сетки можно в широких пределах изменить термические и физико-механические свойства этих полимеров. [c.117]

    Синтез. Основными направлениями синтеза эпоксидных смол являются следующие получение полимеров на основе различных глицидных эфиров и эпоксидирование ненасыщенных соединений. В основе синтеза эпоксидных смол на основе глицидных эфиров лежит реакция эпихлоргидрина с различными диоксисоединениями, в первую очередь с дифенилолнропаном. Несмотря на то, что именно эта реакция положила в 30-е годы начало развитию химии эпоксидных смол, изучению ее механизма до настоящего времени уделяется недостаточно внимания- [c.174]

    Первый путь создания избирательных нонообменников наиболее распространенный. Наряду со значительными достоинствами этого метода (химическая и механическая устойчивость полимеров, возможность регулирования состава сополимера, воспроизводимость синтеза) следует отметить и некоторые недостатки, основными из которых можно считать неоднородность функциональных групп в результате неполного и неоднозначного протекания химических реакций в нерастворимых полимерах. Второй путь синтеза лишен этого недостатка, однако является весьма сложным в связи с трудностями синтеза соответствующих ненасыщенных мономеров и проведения процесса полимеризации. Метод поликонденсации легко выполним, обеспечивает введение в полимер большой гаммы функционально-аналитических групп, в том числе и весьма сложных, избирательно взаимодействующих с отдельными катионами. К отрицательным сторонам метода можно отнести недостаточную воспроизводимость синтеза, невысокую химическую стойкость образующегося [c.238]

    Основной реакцией, приводящей к образованию конденсированных структур, является реакция Дильса — Альдера, или диеновый синтез [24, 44]. В диеновом синтезе пространственная конформация полнена имеет решающее значение. Поэтому вполне естественно, что в формировании углеродистой структуры на второй стадии разложения поливинилхлорида важную роль играет наличие изотактическнх или синдиотактических структур в исходном полимере [54]. [c.172]


Смотреть страницы где упоминается термин Полимеры основные реакции синтеза: [c.17]    [c.306]    [c.308]    [c.4]    [c.144]    [c.98]    [c.131]   
Основы синтеза полимеров методом поликонденсации (1979) -- [ c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции полимеров

Реакции синтеза

Синтез основные реакции



© 2025 chem21.info Реклама на сайте