Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Светорассеяние рассеяние света метод определения молекулярного вес

    Метод светорассеяния является одним из основных абсолютных методов определения молекулярных масс полимеров. В нем измеряют интенсивность рассеяния света — мутность т при нескольких концентрациях и графической экстраполяцией на бесконечное разбавление раствора находят Мш  [c.18]

    Светорассеяние. Метод определения молекулярных весов путем мерения рассеяния света разбавленными растворами полимеров зволяет определить молекулярные веса вплоть до десятков мил-онов. Найденный методом светорассеяния средний молекулярный поливинилхлорида является его средневесовым молекулярным ом. [c.229]


    При определении молекулярных масс полимеров методом Дебая следует также учесть, что параметр т отражает светорассеяние, обусловленное только рассеивающими частицами, и не связан с рассеянием света растворителем, т. е. является избыточной величиной  [c.147]

    Наконец, при определении молекулярного веса по методу светорассеяния можно встретиться еще с двумя практическими помехами 1) с неточностями метода, с помощью которого определяют угловую зависимость рассеяния света большими молекулами 2) с неточностями экспериментальных методов, применяемых для удаления из полимера посторонних рассеивающих веществ. Как известно, уравнение (55) содержит угловую функцию Р (0). Эта функция отражает тот факт, что на больших молекулах происходит внутренняя интерференция рассеянного света, благодаря чему его интенсивность возрастает при уменьшении угла рассеяния. Этот эффект можно исключить, если произвести экстраполяцию к нулевому углу (направление падающего луча) тогда Р (0) = 1 и отрезок, отсекаемый кривой на оси ординат, равен обратной величине действительного молекулярного веса. По форме этой кривой можно судить о наличии посторонних веществ или небольших количеств высокомолекулярного полимера. По наклону кривой люжно определить средний размер молекулы в растворе. [c.40]

    Уравнения и формулы для расчета молекулярных весов методом светорассеяния. Метод светорассеяния является одним из основных абсолютных методов определения молекул ярных весов полимеров. Он основан на теории рассеяния света растворами полимеров, развитой П. Дебаем. Согласно этой теории, интенсивность рассеянного света растворами полимеров [c.344]

    Определение молекулярного веса методом светорассеяния. Определение молекулярного веса методом светорассеяния основано на измерении интенсивности рассеянного растворами полимеров света. Методом светорассеяния можно измерять молекулярные веса с 20 ООО и выше. [c.166]

    Метод светорассеяния может быть использован для определения молекулярного веса не ниже 5000 интенсивность света, рассеянного разбавленных раствором полимера с более низким молекулярным весом, обычно слишком мала для проведения точных измерений. [c.194]

    Характеристическая вязкость — наиболее употребительный параметр при определении молекулярного веса гибких цепных полимеров, а также при оценке размеров молекулярного клубка. Она используется так часто, даже несмотря на то что для выражения [т)] через М2 необходимо предварительное калибрование относительно основного метода (обычно осмометрии или светорассеяния) и что оценка размеров клубка по характеристической вязкости основана на теоретических предпосылках, строгость которых нельзя сравнить со строгостью вывода соотношения между (5 ) и угловой зависимостью интенсивности рассеянного света. Популярность вискозиметрического метода объясняется легкостью получения очень точных экспериментальных данных. Роль этого фактора зачастую может превосходить неопределенность теоретической трактовки, и, таким образом, оценка набухания клубка более надежно может быть получена с помощью характеристической вязкости, чем методами, детально обоснованными теоретически, но и более трудными в экспериментальном отношении. [c.256]


    Рассеяние электромагнитных волн растворами макромолекул и его особенности по фавнению с растворами низкомолекулярных веществ. Определение молекулярной массы и радиуса инерции макромолекул из данных по рассеянию света. Светорассеяние как метод определения средневесовой молекулярной массы полимеров и среднего радиуса инерции макромолекул. [c.381]

    Для определения М нужны измерения коэффициента экстинкции к и рефрактометрические измерения п ж при различных концентрациях. Метод дает для полимеров хорошие результаты. При этом определяется средневесовой молекулярный вес М=М М %М . Однако возможности изучения светорассеяния этим не ограничиваются. Ввиду того что макромолекулярные клубки велики и пе могут считаться исчезающе малыми по сравнению с длиной световой волны, угловое распределение интенсивности света, рассеянного раствором полимера, оказывается специфическим и существенно зависящим от формы макромолекулы— формы клубка. Указанная специфичность является результатом различия фаз световой волны в разных точках молекулы. [c.39]

    Определение молекулярного песа методом светорассеяния. Световые лучи, проходя че-рез растворы полимеров, вы .ывают свечение с неизменной длиной волны, ио в направлениях, отличающихся от первоначального направления пучка света. Это явление называют с в е т о р а с сеяние м. Интенсивность проходящего света зависит от концентрации и величины макромолекул полимера, рассеивающих свет. На свойстве растворов полимеров рассеивать свет основано определение их молекулярного веса. Этот метод является одним из наиболее точных методов определения молекулярного веса Интенсивиость рассеянного света выражают через величинх мутности т, определяемую как долю первичного пучка, рассеянную во всех направлениях при прохождении светом в растворе пути длиной 1 см. Если при прохождении л см начальная интенсивность света / уменьшится до величины /. то мутность определяется из соотношения  [c.82]

    Более интересно применение методов, основанных на рассеянии света, для определения средней молекулярной массы полимеров в растворах. Для расчетов необходимо знать мутность, концентрацию, показатель преломления, длину волны, производную показателя по концентрации и так называемый второй вириальный коэффициент, являющийся мерой неиде-альности раствора. Использование метода светорассеяния ограничено размерами молекул они должны быть меньше длины волны. [c.317]

    Сравнение средневесовой молекулярной массы Жщ, полимера, определенной методом светорассеяния, со среднечисловой молекулярной массой М , полученной осмометрическим методом, позволяет получить сведения о распределении молекул полимера по молекулярным массам. Для однородных по составу полимеров значения Жщ, и М равны, но у полимеро1 с широким распределением по молекулярным массам М оказывается меньше М . Это различие обусловлено разными методами определения молекулярных масс так, осмометрическим методом оценивается число присутствующих в растворе макромолекул, и этот метод в одинаковой степени чувствителен и к малым, и к большим молекулам. С другой стороны, при рассеянии света большие по размеру макромолекулы оказывают большее влияние. [c.529]

    Измерение рассеяния света растворами полимеров является одним из важнейших методов определения средневесового молекулярного веса (М ) высокомолекулярных веществ в интервале МВ J 10 —1-Ш . Метод светорассеяния часто применяют для установления констант в уравнении, связывающем характеристическую вязкость [т ] и МВ. Для полимеров, величина молекул которых сравнима с длиной волны падающего света, зависимость интенсивности рассеянного света от угла к направлению падающего светового пучка позволяет определить сррднеквадратичное расстояние между концами полимерной цепи [c.76]

    Рассеяние света растворами полиметилметакрилата описано во многих работах [1142—1154]. Из результатов, полученных при определении размеров молекул в растворах методом светорассеяния, Кантов, Гйульц [1144], Кантов, Бодман [1145] показали, что для ацетонового раствора полиметилметакрилата с ростом молекулярного веса от 0,341-10 до 7,8-10 среднее расстояние между концами молекул (/Zst) растет от 470 до 2900 A. Зависимость среднего расстояния от молекулярного веса имеет вид hst = 0,303Мв . Связь между характеристической вязкостью [t ] и Мб выражается следующим уравнением ]r ] = 6,0 10 3M (в хлороформе), [tJ= 5,3 - 10 Мв (в ацетоне). [c.391]

    Измерение светорассеяния не вносит никаких изменении в изучаемую систему и может быть выполнено очень быстро. Поэтому этот метод очень удобен для исследования хода реакций (таких, например, как димеризация белков или денатурация коллагена), сопровождающихся сильным изменением молекулярного веса. При подготовке к измерению светорассеяния наиболее трудоемким и важным этапом является очистка растворов, так как при определении молекулярного веса даже небольшие загрязнения высокомолекулярными веществами или пылью могут сильно исказить результат. В особенности это относится к методу Цимма, в котором применяется экстраполяция к нулевому углу. С целью очистки растворы подвергают ультрафильтрованию или центрифугированию. Концентрации определяют обычно после очистки раствора и измерения светорассеяния. Со светорассеянием приходится иметь дело как с побочным эффектом во многих оптических исследованиях, в частности при спек-трофотометрировании растворов макромолекул особенно сильно рассеяние в ультрафиолетовой области. С хорошим приближением можно считать, что уменьшение интенсивности падающего света при прохождении его через вещество обусловлено [c.161]


    Измерение рассеяния света растворами полимеров — один из важнейших методов определения средневесового молекулярного веса полимеров в интервале 1-10 —1-10 . Широкое применение получил метод Дебая, при котором используют визуальный нефелометр, предназначенный для измерения интенсивности рассеянного света раствором под углом 90° и асимметрии светорассеяния под углами 45 и 135° к падающему световому пучку .  [c.172]

    Общепринятым методом определения является измерение светорассеяния разбавленных растворов полимеров, т. е. отношения интенсивности рассеянного света к интенсивности падающего света (гл. 5). М,утность пропорциональна таким образом, чувствительность не уменьшается при увеличении молекулярного веса. Измеряя угловое распределение светорассеяния, можно получить более подробные данные о форме и размерах полимерной молекулы в растворе. [c.15]

    Среднемассовую ММ — Мщ, обычно определяют методами светорассеяния и седиментации. В этих методах используется сложное и дорогостоящее оборудование. Кроме того, при седиментации в ультрацен-трифуге необходимая длительность эксперимента Б некоторых случаях достигает нескольких недель. Эксперимент состоит в том, что раствор полимера помещают в ячейку, которая вращается в течение длительного времени. В результате достигается термодинамическое равновеспе, так что полимер распределяется по радиусу ячейки в соответствии с молекулярной массой фракций. При этом центробежная сила, действующая на макромолекулы, уравновешивается движущей силой, обусловленной диффузией и направленной противоположно градиенту концентрации. Определение ММ методом светорассеяния основано на том, что интенсивность рассеяния падающего света пропорциональна квадрату массы макромолекул. [c.74]

    Метод светорассеяния существенно упрощаегся, если измерение производить в интервале углов от 2 до Ю . Это так называемое малоугловое светорассеяние в отличие от рассмотренного выше широкоуглового. В этом методе светорассеяние определяют при одной величине угла, а расчет ведут, как для молекул с малой массой. Применение малоуглового рассеяния с использованием в качестве источника света лазера делает этот метод удобным для непрерывного контроля молекулярной массы и определения ММР. [c.206]


Смотреть страницы где упоминается термин Светорассеяние рассеяние света метод определения молекулярного вес: [c.115]    [c.57]    [c.339]    [c.60]    [c.235]   
Химия высокомолекулярных соединений Издание 2 (1966) -- [ c.282 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярная метод Метод молекулярных

Молекулярный вес методом светорассеяния

Молекулярный вес, определение

Рассеяние метод определения молекулярной

Рассеяние молекулярное

Рассеяние света

Рассеяние света молекулярное

Светорассеяние метод определения



© 2025 chem21.info Реклама на сайте