Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптимизация и химической технологии

    Предлагаемая читателю монография представляет восьмую книгу в единой серии работ авторов под общим названием Системный анализ процессов химической технологии , выпускаемых издательством Наука с 1976 г. Семь предыдущих монографий 1. Основы стратегии, 1976 г. 2. Топологический принцип формализации, 1979 г. 3. Статистические методы идентификации объектов химической технологии, 1982 г. 4. Процессы массовой кристаллизации из растворов и газовой фазы, 1983 г. 5. Процессы измельчения и смешения сыпучих материалов, 1985 г. 6. Применение метода нечетких множеств, 1986 г. 7. Энтропийный и вариационный методы неравновесной термодинамики в задачах анализа химических и биохимических систем, 1987 г.) посвящены отдельным вопросам теории системного анализа химико-технологических процессов и его практического применения для решения конкретных задач моделирования, расчета, проектирования и оптимизации технологических процессов, протекающих в гетерогенных средах в условиях сложной неоднородной гидродинамической обстановки. [c.3]


    В предлагаемом учебном пособии описаны математические методы оптимизации, получившие за последние годы распространение в химической технологии. Систематизация и прикладная направленность этих методов позволили сформировать курс лекций, читаемый в течение нескольких лет на кафедре кибернетики химико-техполо-гических процессов Московского химико-технологического института им. Д. И. Менделеева. Со1[ержание книги в основном соответствует принятому изложению лекционного материала, за исключением глав I и II, где приведены краткие сведения, рассматриваемые в других курсах кафедры и нужные для иллюстрации методов решения оптимальных задач. Кроме того, некоторые специальные математические вопросы, не относящиеся непосредственно к методам оптимизации, но необходимые при их изложении, вынесены в Приложение к книге. Такое построение учебного пособия исключает необходимость предварительного знакомства с дисциплинами, выхо-дяилимп за рамки обычных курсов химико-технологических вузов, и делает его доступным для инженеров-химиков и технологов, занимающихся оптимизацией химических производств и владеющих математической подготовкой в объеме технического вуза. Книга может оказаться также полезной аспирантам химико-технологических специальностей и химических факультетов университетов. [c.10]

    Теоретические основы химической технологии Следует отметить также материалы I Всесоюзного совещания по моделированию и оптимизации каталитических процессов (Новосибирск, 1963), изданные в виде сборника  [c.12]

    В книге с использованием математической статистики рассмотрены методы оптимизации экспериментальных исследований в химии и химической технологии. Последовательно излагаются способы определения параметров законов распрсдело-Е1ИЯ, проверка статистических гипотез, методы дисперсионного, корреляционного и регрессионного анализов и планирования экстремального эксперимента также рассмотрены вопросы выбора оптимальной стратегии эксперимента при исследовании свойств многокомпонентных систсм. Статистические методы анализа и планирования эксперимента иллюстрируются примерами конкретных исследований в химии и химической технологии. [c.2]

    За последние годы литература по научным основам химической технологии значительно обогатилась, особенно в части теории химических реакторов, математических методов моделирования и оптимизации химико-технологических процессов. При этом широко используется метод теоретических обобщений, так хорошо себя оправдавший в общеинженерном курсе процессов и аппаратов химической технологии. [c.5]


    Все процессы химической технологии можно разделить иа шесть основных групп механические, гидродинамические, тепловые, диффузионные, или массообмен-пые, химические, управления и оптимизации ]1р()м )-водств. [c.87]

    Термодинамический метод синтеза теплообменных систем [16]. Анализ процессов химической технологии на основе первого закона термодинамики находит широкое практическое применение. Наряду с этим все большее распространение получают методы анализа на основе второго начала термодинамики, в частности (используемые исходя из концепции эксергии как меры превратп-мости энергии), при оптимизации и проектировании технологических производств (см. гл. 7). Привлекательность этих методов заключается в том, что имеется возмо кность оценить в общем случае минимально возмо кные потери энергии за счет необратимости процесса и тем самым определить реальные перспективы совершенствования процесса. Развитие этих термодинамических методов идет по пути получения количественной информации о совершенстве протекания отдельных явлений. Что касается качественных выводов, то они хорошо известны. Например, потери превратимой энергии отсутствуют при смешении потоков, находящихся в термодинамическом равновесии, или потери энергии в противоточном теплообменнике выше, чем в прямоточном, равно как с увеличением поверхности теплообмзна потери за счет необратимости нроцесса снижаются. [c.466]

    Основными данными при решении задач технологического проектирования и оптимизации являются физико-химические и теплофизические данные. Они обычно представляются в трех формах — в виде таблиц, диаграмм и уравнений. Наиболее распространенным способом все-таки является аналитическое представление, допускающее непосредственный расчет соответствующих параметров при заданных входных условиях. В химической технологии, особенно для целей проектирования, к наиболее распространенным данным обычно относятся давление пара, теплота испарения, удельная теплоемкость, плотность, теплопроводность, вязкость, теплота реакций, данные по пожаробезопасности, поверхностное натяжение, фазовое равновесие (жидкость—пар, жидкость—жидкость, жидкость—жидкость—пар, жидкость—твердое вещество, твердое вещество—пар, растворимость), кинетика реакций химического превращения, полимеризации, растворимости и т. д. [c.177]

    В книге в доступной форме изложены основы методом оптимизации (классический анализ, вариационное исчисление, принцип максимума, динамическое, линейное и нелинейное программирование) с иллюстрацией их на объектах химической технологии. Сформулированы общие положения, касающиеся выбора критериев о[1ти-мальности химико-технологических процессов, и приведены их математические модели. Рассмотрены задачи, связанные с оптимизацией конкретных процессов. [c.4]

    МАТЕМАТИЧЕСКИЕ МОДЕЛИ КАК ОСНОВА ОПТИМИЗАЦИИ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ [c.40]

    А95 Оптимизация эксперимента в химии и химической технологии Учеб. пособие для химико-технологических вузов.— М. Высш. школа, 1978.— 319 с., ил. [c.2]

    В современной технической литературе часто встречается термин оптимизация . По существу он уже знаком нам. В гл. 2 это понятие было выражено следующим образом человек или общества стремятся к удовлетворению своих потребностей с наименьшими затратами труда. Наука о процессах и аппаратах химической технологии, вычислительная техника, техника управления в наши дни достигли такого высокого уровня, что способы совершенствования технологических процессов, основанные только на производственном опыте, можно развить в сознательные, охватывающие все моменты инженерной деятельности методы оптимизации. [c.315]

    Основой методов оптимизации химико-технологических процессов служит достаточно подготовленный сейчас математический аппарат, средством реализации которого являются электронные вычислительные машины. На современном этапе важнейшая задача химической технологии заключается в составлении и использовании двух алгоритмов оптимального проектирования процесса и оптимального управления данным процессом. [c.9]

    Алгоритмизация этого этана состоит в разработке математических моделей типовых процессов химической технологии. Необходимо не только качественное, но и количественное описание явлений, определяющих процесс. К настоящему времени известно большое количество алгоритмов расчета типовых процессов, отличающихся степейью детализации отдельных составляющих модели, но, по сути, предназначенных для решения систем уравнений материального и теплового балансов, нельнейность которых зависит от точности описания равновесия, химической кинетики, кинетики тепло- и массопереноса, гидродинамики потоков. Объем входной информации зависит от точности модели, однако выходная информация подавляющего большинства алгоритмов практически одинакова профили концентраций, потоков и температур по длине (высоте) аппарата, составы конечных продуктов. Правда, соответствие результатов расчета реальным данным будет определяться тем, насколько точно в модели воспроизведены реальные условия. И все же, несмотря на обилие алгоритмов, нельзя сказать, что проблема разработки моделей (и соответственно расчета) решена — по мере углубления знаний об объекте модели непрерывно совершенствуются. Тем более что до сих пор в определенном классе процессов отсутствуют алгоритмы, обеспечивающие получение решения в любой постановке задачи и обладающие абсолютной сходимостью. Надо учесть еще, что задача в проектной постановке часто решается как задача оптимизации с использованием алгоритмов в проверочной постановке. [c.120]


    Единый подход к решению широкого класса задач па разыскание экстремума функции большого конечного числа переменных дает теория динамического программирования Веллмана [7]. Сущность этой теории покажем на примере типичной задачи оптимизации, возникающей в химической технологии. Требуется найти оптимальный режим для последовательности N реакторов (или Л -стадийного аппарата), причем на каждой стадии варьируется М независимых переменных. Пронумеруем реакторы в обратном порядке, так что первый номер присваивается последнему, а N-й — первому по ходу потока реактору. Состояние потока на выходе п-го реактора обозначим индексом 71 в соответствии с этим исходное состояние потока обозначается индексом -/V 1 (рис. 1Х.З). Состояние реагирующего потока в общем случае описывается некоторым вектором X. Вектор X часто совпадает с вектором состава С в более сложных случаях, однако, компонентами вектора X могут быть, помимо концентраций ключевых веществ, также и температура потока, давление и пр. [c.381]

    Указанные направления научно-технического прогресса в промышленности поставили перед химической технологией объективную необходимость разработки методов решения следующих принципиально новых научных проблем разработка высокоэффективных технологических схем для выпуска требуемой продукции с оптимальной материалоемкостью оптимизация качества функционирования действующих производств с использованием обобщенных технико-экономических критериев эффективности (КЭ) передача функций управления собственно производству при разработке специальной структуры технологических потоков между оборудованием. [c.13]

    В химической технологии более 50% исходных данных на проектирование и оптимизацию процессов составляют физико-химические и теплофизические свойства веществ [35]. Причем точность их имеет решающее значение для определения параметров процесса. Другим видом информации, необходимой для работы САПР, являются данные о технологическом оборудовании. Данные по оборудованию необходимы для работы подсистемы конструкционного расчета, а стоимостные характеристики — для оценки эффективности реализации процесса. По существу, это [c.112]

    Обеспечение и оптимизация надежности химических, нефтеперерабатывающих и нефтехимических производств — одно из основных научно-технических направлений радикального повышения их безопасности и существенного роста экономической эффективности, создания благоприятных условий для охраны окружающей среды. Возникновение, формирование и развитие нового научного направления в области теоретических основ химической технологии — теории надежности химических производств — обусловили создание объективных предпосылок для успешной разработки научно обоснованных рещений по обеспечению оптимального уровня надежности оборудования и технологических схем. [c.6]

    В СССР в 1974—1977 гг. на основе фундаментальных концепций системного анализа в химической технологии были выполнены исследования по методологии системного подхода к анализу и оптимизации надежности, по топологическим методам расчета и оптимизации показателей надежности химических производств. [c.6]

    Среди многообразия процессов химической технологии значительное место занимают процессы массообмена. По существу почти любой химико-технологический процесс в той или иной степени сопровождается явлениями массопередачи. Однако имеется большая группа процессов, для которых массонередача является основным фактором, определяющим их назначение. Примерами таких процессов служат ректификация, экстракция, абсорбция, десорбции и т. д., где лшссообмеи ироисходит между различными фазами, в результате чего достигается обогащение одной фазы одним или несколькими компонентами. В настоящее время ироцессы массоиередачи интенсивно исследуют методами математического моделирования что позволяет использовать методы оптимизации для оптимальной организации этих процессов. [c.66]

    Развитие и внедрение системного анализа как современного подхода к решению задач химической технологии, большое число математических моделей и совершенствование средств вычислительной техники обусловили становление качественно нового направления в использовании вычислительных средств и метода математического моделирования. Это направление заключается в создании прикладных операционных систем (систем моделирования и оптимизации, систем управления, САПР и т. д.) как совокупности взаимодействующих элементов, объединенных единством цели или общими целенаправленными правилами взаимоотношений [35]. [c.147]

    В последних работах по оптимизации рассматривается возможность улучшения рабочих параметров не только реактора, но и работающей в комплексе с ним аппаратуры. Метод решения этой проблемы с использованием понятия достижимых и недостижимых областей переменных параметров реактора изложен в докладе Хорна на Третьем Европейском конгрессе по процессам химической технологии (1964). На этом же симпозиуме Кюхлер и Ланг-бейн привели несколько интересных практических примеров оптимизации (хлорирование метана, полимеризация этилена, сульфирование нафталина), а Боресков и Слинько сообщили об удачном приложении принципа Понтрягина. [c.153]

    В настоящее время принцип максимума нашел широкое п )пмеие-ппс в практике решения оптимальных задач оптимизации, отиося-ишхся области химической технологии . [c.320]

    Авторы надеются, что книга будет полезна псследователям, работающим в области теоретических основ химической, нефтехимической и биохимической технологии, кибернетики и системного анализа химических и биохимических процессов, научным и инженерно-техническим работникам, занимающимся разработкой процессов п аппаратов химической технологии п работающим над проблемами оптимизации, управления и оптимального проектирования процессов химической, нефтехимической, микробиологической промышленности, а также аспирантам и студентам старших курсов. [c.4]

    В химической технологии эксперименты могут проводиться на нескольких уровнях, а именно а) лабораторные исследования, целью которых является определение физико-химических характеристик процесса (явления), свойств веществ и соединений, отработка теоретических предположений б) исследования на опытных установках с целью выбора типов аппаратов, разработка технологического регламента, изучения диналшки объекта (выбора каналов управления) в) исследования на промышленных установках с целью оптимизации технологических и конструкционных параметров объекта, совершенствования технологии и оборудования г) исследования на математических моделях с целью выбора оптимальных условий эксплуатации, процесса, отработки алгоритмов управления, выбора связей между отдельными частями системы и т. д. [c.56]

    Результаты эксперимента в химии и химической технологии были и остаются главным критерием при решении практических задач и при проверке теоретических гипотез. Изучение сложных технологических процессов сопряжено с трудоемким и длительным экспериментом. Для увеличения эффективности научных исследований, сокращения сроков разработки новых технологических процессов несбходима оптимизация экспериментальных исследований на всех стадиях разработки, исследования, внедрения и эксплуатации хи-ми ю-технологических процессов. [c.5]

    Основным путем повышения эффективности использования математического обеспечения для решения задач химической технологии является разработка и применение программно-машинных комплексов широкого доступа в области оптимизации, ироектирования и управления. Применение таких систем повышает интеллектуальную вооруженность исследователя, позволяя в более короткие промежутки времени и на более высоком научном уровне принимать продуманные решения при анализе и, особенно, проектировании объектов химической технологии. [c.4]


Смотреть страницы где упоминается термин Оптимизация и химической технологии: [c.43]    [c.48]    [c.272]    [c.31]    [c.111]    [c.129]    [c.565]    [c.4]    [c.255]    [c.155]    [c.173]    [c.93]    [c.353]   
Химический энциклопедический словарь (1983) -- [ c.411 ]




ПОИСК





Смотрите так же термины и статьи:

Задачи оптимизации в химической технологии. Расширение экстремальных задач

Математические модели как основа оптимизации процессов химической технологии

Оптимизация процессов химической технологии

Оптимизация химического



© 2025 chem21.info Реклама на сайте