Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллизация массовая

    Различают след, виды фракционной кристаллизации массовую, иа охлаждаемых пов-стях, направленную, зонную плавку. [c.524]

    Х2 — концентрация по безводной соли маточного раствора после кристаллизации, массовые доли или %  [c.233]

    В большей части жидкости выравнивание относительного содержания примеси обычно происходит за счет естественной или вынужденной конвекции. Однако в пределах тонкого слоя толщиной 5 примыкающего к границе раздела фаз и называемого диффузионным, отвод примеси в объем расплава возможен только за счет диффузии. Поэтому при значениях /, превосходящих предельные, у фронта кристаллизации относительное содержание примеси с /с < 1 (С превосходит ее среднее относительное содержание в расплаве (Сх,). Поскольку, однако, непосредственное измерение затруднено, распределение примеси в слитке описывают при помощи эффективных коэффициентов распределения, связывающих С и для любой степени кристаллизации (массовой доли закристаллизованного расплава) д  [c.29]


    С помощью указанных характеристик удобно сравнивать различные режимы направленной кристаллизации, однако они не позволяют непосредственно оценивать результат концентрирования или очистки-среднее относительное содержание примеси в концентрате (Ск) или ректификате (Ср) после кристаллизации массовой доли д исходной загрузки. [c.47]

    Конденсационные статистические и блоксополимеры отличаются по свойствам. Свойства блоксополимеров зависят от массовой доли и расположения различных повторяющихся звеньев в сополимере. Это позволяет регулировать свойства блоксополимеров способность к кристаллизации, эластичность, температуру стеклования, плавления и др. Для статистического сополимера такой зависимости свойств не наблюдается [3, с. 123]. [c.173]

    Рост прочности у синтетического полиизопрена без полярных групп с большой молекулярной массой и узким молекулярно-массовым распределением можно достаточно полно объяснить в рамках теории вязкоупругости линейных полимеров [23]. Высокие напряжения при деформации сажевых смесей стереорегулярных модифицированных полимеров, как было показано, связаны с их способностью к кристаллизации. Роль стереорегулярности в кристаллизации полимеров очевидна [24, с. 145—173 25 26, с. 205— 220]. Полярные группы увеличивают общее межмолекулярное взаимодействие и вязкость системы, усиливают взаимодействие с наполнителем за счет образования химических связей и адсорбционного связывания, которое способствует и увеличению напряжения при деформации и собственно кристаллизации, а также повышают суммарную скорость кристаллизации вследствие ускорения ее первой стадии — зародышеобразования. [c.235]

    Из данных спектров релаксации было установлено, что молекулярно-массовое распределение сегментов не сказывается на температурном переходе, обусловленном локальным движением метиленовых групп эластичного сегмента, температура стеклования которого определяется содержанием жесткого блока, а не молекулярно-массовым распределением. Но при идентичных составах полимеры с узким молекулярно-массовым распределением характеризуются более высокой температурой стеклования, что, вероятно, объясняется лучшим разделением фаз и кристаллизацией. [c.541]

    Предлагаемая читателю монография представляет восьмую книгу в единой серии работ авторов под общим названием Системный анализ процессов химической технологии , выпускаемых издательством Наука с 1976 г. Семь предыдущих монографий 1. Основы стратегии, 1976 г. 2. Топологический принцип формализации, 1979 г. 3. Статистические методы идентификации объектов химической технологии, 1982 г. 4. Процессы массовой кристаллизации из растворов и газовой фазы, 1983 г. 5. Процессы измельчения и смешения сыпучих материалов, 1985 г. 6. Применение метода нечетких множеств, 1986 г. 7. Энтропийный и вариационный методы неравновесной термодинамики в задачах анализа химических и биохимических систем, 1987 г.) посвящены отдельным вопросам теории системного анализа химико-технологических процессов и его практического применения для решения конкретных задач моделирования, расчета, проектирования и оптимизации технологических процессов, протекающих в гетерогенных средах в условиях сложной неоднородной гидродинамической обстановки. [c.3]


    Одним из основных вопросов, решаемых при расчете кристаллизаторов, является описание кинетики кристаллизации, состоящей из стадий создания пересыщения, -образований зародышей и роста кристаллов. Она также зависит от перекристаллизации осадка, коалесценции и дробления кристаллов в результате столкновения между собой и со стенками аппарата. На кинетику массовой кристаллизации существенно влияют температура, степень пересыщения раствора, перемешивание, наличие примесей, физикохимические свойства раствора, конструкция аппарата и т. д. Детальное описание явлений и факторов, сопровождающих процессы массовой кристаллизации из растворов и газовых смесей, дано в монографии [17]. Важное значение имеет также описание условий равновесия между сосуществующими фазами (твердое вещество—жидкость, твердое вещество—газ (пар)). На основании условий фазового равновесия в первом приближении возможен выбор необходимого растворителя для процессов кристаллизации, а также перекристаллизации. [c.90]

    Кафаров В. В., Дорохов И. П., Кольцова Э. М. Системный анализ процессов химической технологии Процессы массовой кристаллизации из растворов и газовой фазы. М. Наука, 1983. 488 с. [c.172]

    Наряду с усовершенствованием ректификационных установок ведется поиск других способов получения чистых продуктов, менее энергоемких, чем ректификация. Правда, эти работы проводятся применительно к конкретным производствам и системам, физико-химические свойства которых позволяют применить другой способ разделения. В работе [51] рассмотрен пример замены ректификации диметилформамида из водного раствора экстракцией, кристаллизацией при пониженных температурах, многоступенчатой ректификацией с колоннами при различных давлениях, ректификацией в установке с тепловым насосом. Исходная смесь с массовой долей диметилформамида 12,5% в количестве 10 ООО кг/ч поступала на разделение, концентрация целевого продукта составляла 99,9%. Результаты сравнения этих способов получения чистого продукта приведены в табл. 8.5. [c.486]

    Такой подход особенно эффективен при моделировании физикохимических процессов в полидисперсных средах с массовым взаимодействием составляющих в области малых параметров (реакторные гетерофазные процессы, кристаллизация, экстракция, абсорбция, ректификация, многие биохимические процессы и т. п.). Заметим, что при моделировании процессов в области больших параметров (давлений, скоростей, температур) могут быть использованы методы статистических теорий механики суспензий [14—16]. [c.15]

    Уравнение баланса свойств ансамбля частиц (1.88) (уравнение БСА) само по себе носит достаточно универсальный характер. Оно является эффективным средством описания стохастических сторон многих химико-технологических процессов в полидисперсных средах, массовой кристаллизации, экстракции, абсорбции, ректификации, протекающих в полидисперсных системах, многих биохимических процессов и т. п. [c.72]

    МАССОВОЙ КРИСТАЛЛИЗАЦИИ ИЗ РАСТВОРОВ И газовой фазы [c.1]

    За годы становления системного анализа как научного направления в химической технологии (начиная с 70-х годов) авторы накопили определенный опыт практического применения этого мощного формального аппарата для рещения задач анализа, расчета, оптимального проектирования и управления процессами химической технологии. В данной книге излагаются вопросы реализации стратегии системного анализа для решения конкретных задач массовой кристаллизации. [c.3]

    Трудности при моделировании такого рода ФХС обусловлены не только их сложностью, но и тем, что до недавнего времени были недостаточно разработаны соответствующие разделы теоретической механики неоднородных сред. Так, отсутствовали общие уравнения движения многофазных сред, которые учитывали бы многокомпонентный массо- и теплоперенос, фазовые превращения, химические реакции, неравномерность распределения частиц дисперсной фазы по размерам. Поэтому моделирование процессов массовой кристаллизации из растворов сводилось либо к решению уравнения баланса размеров кристаллов вне связи с силовыми и энергетическими взаимодействиями фаз, либо к оперированию алгебраическими (при анализе установившихся режимов) уравнениями баланса массы и тепла для аппарата в целом как для объекта с сосредоточенными параметрами. [c.4]

    Реализация методологии системного анализа позволила авторам получить ряд новых результатов в области теории массовой кристаллизации из растворов и газовой фазы. Так, впервые получена и проанализирована структура движущих сил массоотдачи к поверхности фаз и от нее. Выдвинуто и обосновано новое представление о структуре границы раздела фаз как о самостоятельной [c.4]


    Во второй главе на основе обобщенного функционального оператора процесса массовой кристаллизации строятся модели промышленных кристаллизаторов различных конструкций с учетом характерных неоднородностей гидродинамической обстановки. Наряду с построением оригинальных математических моделей промышленных кристаллизаторов систематизированы известные математические модели кристаллизаторов советских и зарубежных авторов. [c.6]

    Представляемая читателю монография — результат многолетней работы авторов над проблемами системного анализа процессов химической технологии является, по существу, первым в отечественной и зарубежной литературе трудом, где дано решение широкого круга проблем в области моделирования, проектирования и оптимизации процессов массовой кристаллизации из растворов и газовой фазы на основе комплексного системного подхода. [c.6]

    Стратегия системного подхода к исследованию и моделированию процесса массовой кристаллизации в качестве первого этапа предполагает качественный анализ структуры процесса кристаллизации, из которого выделяются два аспекта смысловой, т. е. предварительный анализ априорной информации о физико-химических особенностях процесса кристаллизации, и математический, т. е качественный анализ структуры математических зависимостей, которые могут быть положены в основу описания процесса массовой кристаллизации. [c.7]

    КАЧЕСТВЕННЫЙ АНАЛИЗ СТРУКТУРЫ ПРОЦЕССА МАССОВОЙ КРИСТАЛЛИЗАЦИИ [c.14]

    Феноменологический подход к описанию процессов массовой кристаллизации [c.14]

    Введем основные допущения при математическом описании процесса массовой кристаллизации. [c.14]

    Построим математическую модель процесса массовой кристаллизации из растворов и газов с учетом роста, образования зародышей, непрерывной функции распределения по размерам. Примем > 1=1 И2(г)=0, т. е. постулируется, что доля кинетической энергии смеси из-за силового взаимодействия первой и г-фаз переходит непосредственно во внутреннюю энергию несущей фазы. Можно считать, что на поверхности контакта фаз выполняется соотношение [4, 5, 9] [c.27]

    Опишем процесс массовой кристаллизации с учетом явления бесконтактного вторичного зародышеобразования. [c.39]

    Опишем процесс массовой кристаллизации из растворов и газовой фазы с учетом контактного вторичного зародышеобразования. Контактное зародышеобразование [30, 33, 38—41] осуществляется посредством маточных кристаллов, если они сталкиваются с другой поверхностью, которой может быть поверхность других кристаллов или стенок кристаллизатора и мешалки. Контактное зародышеобразование вызывает у исследователей значительный интерес, так как вклад его в образование кристаллов наибольший среди всех других видов зародышеобразования [35, 33, 39]. В опубликованных исследованиях для этого типа зародышеобразования контакт достигался или скольжением кристалла вдоль наклонной стеклянной поверхности, погруженной в пересыщенный раствор того же самого вещества [30], или столкновением с мешалкой, или же контрольным ударным контактом между кристаллической затравкой и прутком, сделанными из различных материалов [33, 40]. Существует непосредственная корреляция между числом образовавшихся зародышей и энергией удара при постоянной площади соприкосновения. Авторы работ [33, 42] отмечают сильную зависимость скорости контактного зародышеобразования от пересыщения и предлагают объяснение этого механизма новые центры образуются в жидкой фазе около кристалла или происходят из затравочного кристалла в результате истирания при соударении, при котором от поверхности кристалла откалываются маленькие кусочки, но выживают и получают право на дальнейший рост только те, размер которых больше критического для данного пересыщения. Изучению влияния на контактное зародышеобразование размеров затравочных кристаллов и интенсивности перемешивания посвящены работы [40, 43]. [c.47]

    Система осредненных уравнений для описания процесса массовой кристаллизации имеет вид (зародышеобразование не рассматривается, о-фазой пренебрегаем) [c.126]

    Рассол с массовой долги КС] 0,215 и Na l 0,169 подвергают кристаллизации. Состав маточного раствора, выходящего пз кристаллизатора (в массовых долях) КС1 0,129 и Na l 0,185, Вычислить массу маточного раствора, получаемого из 1 т первоначального рассола, и массовую долю выкристаллизовавшегося КС1. [c.182]

    Когда сетка полиуретана подвергается деформации растяжения, то противодействие внешнему напряжению оказывают ориентированные участки между сшивками. Оборванные цепи релак-сируют независимо от приложенного напряжения. При строгом соблюдении требований по функциональности исходных соединений обычно получается уретановый эластомер с пространственной структурой, близкой к идеальной. Но в реальных системах наблюдаются отклонения от оптимально сформированной сетки. Возникают полусвязанные и даже вообще свободные цепи, создающие неэффективную часть сетки [58]. Здесь уместно еще раз напомнить данные по сопротивлению разрыву полиуретанов на основе поли-оксипропиленгликолей. Несомненно, что низкие физико-механические показатели этих полиуретанов есть следствие нерегулярности структуры и отсутствия обратимой кристаллизации при растяжении. Кроме того, промышленный полиэфир молекулярной массы 2000 обычно содержит 4—5% (мол.) монофункциональных молекул, образующих не несущие нагрузки цепи и золь-фракцию полимеров [33, с. 33]. Наличие монофункциональных соединений в пространственной структуре уретановых эластомеров влияет не только на изменение соотношения эффективных и неэффективных цепей, но в некоторой степени определяет молекулярную массу и молекулярно-массовое распределение сегментов. При этом свободные [c.543]

    Первый путь состоит в том, что при выводе уравнений движения многофазной многокомпонентной среды типа (1.66) наряду с пространственными координатами х , х , з и временем Ь вводится еще одна независимая переменная — характерный размер включений или объем частицы V. Все зависимые переменные модели становятся функциями пяти аргументов х , х , х , I, V, а система уравнений движения дисперсной смеси типа (1.66) дополняется еще одним уравнением баланса относительно многомерной плотности распределения частиц по названным координатам р (х , а , I, у). Несмотря на некоторое усложнение математической модели, такой подход иногда (например, когда включения представляют твердые частицы) приводит к эффективному решению задачи. Примером может служить описание процессов массовой кристаллизации с учетом многофазности среды, фазовых превращений, кинетики роста кристаллов и зародышеобразова-нйя, распределения частиц по размерам и эффектов механического взаимодействия между ними [4]. [c.136]

    В работе изложены теоретические основы, необходимые для понимания и расчета процессов массовой кристаллизации в различных кристаллизаторах, выведены уравнения движения н тер.модина.мики гетерогенных сред, в которых происходит Гфоцесс массовой кристаллизации. Получены замкнутые системы уравнений для полидисперсиых смесей с учетом фазовых переходов (кристаллизация, растворение), относительного движения фаз, хаотического движения и столкновений частиц. Определены движущие силы массопереноса в процессе кристаллизации. Описаны имеющиеся в современной литературе решения задач о тепломассообмене около частиц, теории за-родышеобразования и роста кристаллов. Получено математическое описание процесса массовой кристаллизации и как частные случаи — математические модели кристаллизаторов различных типов. Рассмотрены задачи ои-тимизации промышленных кристаллизационных установок. [c.2]

    Конечная цель системного анализа на уровне отдельного химико-технологического процесса — построение функционального оператора (модуля химико-технологического процесса), который используется в дальнейшем для решения задач оптимизации, управления, проектирования процессов, а также для решения задач выс-щих ступеней иерархии химического производства. Необходимость применения системного подхода особенно остро стоит при анализе сложных ФХС, т. е. систем, для которых характерны многообразие явлений, совмещенность и взаимодействие явлений различной физико-химической природы. К таким системам можно отнести процессы массовой кристаллизации из растворов и газовой фазы. [c.3]

    Развиваемый в данной миографии системный подход к описанию сложных ФХС открывает путь к созданию Достаточно общего математического описания процессов массовой кристаллизации, учитывающего все основные особенности в тесной взаимосвязи. На этапе качественного анализа структуры ФХС (рассматривая смысловой и количественный аспекты анализа) сформулированы общие уравнения термогидромеханики полидисперсной смеси (уравнения сохранения массы, количества движения, энергии с учетом произвольной функции распределения частиц по размерам, фазовых переходов и поверхностной энергии частиц). Тем самым созданы предпосылки для последовательного и обоснованного учета наиболее существенных явлений и их описаний от первого до пятого уровней в общей иерархической структуре эффектов при построении функционального оператора полидисперсной ФХС произвольного вида. [c.4]

    Книга состоит из четырех глав. В первой главе, посвященной качественному анализу структуры процесса массовой кристаллизации как сложной ФХС, вскрываются особенности данной ФХС как на языке смысловых, лингвистических построений, так и на языке точных математических формулировок, причем в последнем случае обсуждаются два подхода — феноменологический (детерминированный) и стохастический. На уровне детерминированного подхода формулируется обобщенная система уравнений термогидромеханики полидисперсной смеси с произвольной функцией распределения кристаллов по размерам с учетом роста, растворения, зародышеобразования, агрегации и дробления кристаллов. Особое внимание уделено описанию процесса вторичного зародышеобразования. На основе термодинамического подхода получены теоретические зависимости для структуры движущих сил вторичного зародышеобразования при бесконтактном и контактном зародышеобразовании. Стохастический подход представлен методом пространственного осреднения, развитого в последние годы в механике гетерогенных сред, а также методами фазового пространства и стохастических ансамблей для описания стохастических свойств процессов массовой кристаллизации. На основе метода пространственного осреднения получено уравнение типа Колмогорова— Фоккера — Планка с коэффициентом диффузии, учитываю- [c.5]

    Рассмотренные эффекты первого, второго, третьего и четвертого уровней иерархической структуры процесса массовой кристаллизации находятся в тесной взаимосвязи друг с другом и образуют совокупность так называемых микрогидродинамических факторов, влияющих на процессы переноса субстанций в гетерофазной системе. [c.11]

    Пятый уровень иерархической структуры процесса массовой кристаллизации из растворов составляет совокупность явлений, которые определяют гидродинамическую обстановку в масштабе кристаллизатора. Исходным фактором, определяющим специфику эффектов пятого уровня иерархии, служат конструктивные особенности кристаллизатора КОКр (рис. 2). К последним можно отнести геометрические особенности кристаллизатора, тип перемешивающих и теплообменных устройств, расположение входных и выходных патрубков и т. п. Непосредственно конструктивными особенностями кристаллизатора определяются подвод внешней механической энергии ПВМЭ (дуга /), идущей на создание (дуга 4) механического перемешивания в системе МехП, и подвод (или отвод) тепловой энергии ПТЭ (дуга 3), связанный с конструктивными особенностями теплообменных устройств и режимом подачи теплоносителей. [c.11]

    Пусть пересыщения в системе недостаточно для образования зародышей гомогенным или гетерогенным путем и зародыши возникают за счет истирания кристаллов несущей фазой. Зародыши будем считать самостоятельной фазой, средняя плотность и объемное содержание которой р, и з (причем рз=р2"ПаЛ ЯзГз= = , Пз=/зГз —число зародышей в единице объема). Перейдем к выводу уравнений термогидромеханики для описания процесса массовой кристаллизации с учетом роста кристаллов и бесконтактного вторичного зародышеобразования. [c.39]

    Таким образом, система уравнений термогиДромеханики, описывающая процесс массовой кристаллизации из растворов и газов с учетом явления вторичного (контактного) зародыщеобразования, представлена соотношениями (1.115)—(1.116), (1.120) — 0-124). [c.52]


Библиография для Кристаллизация массовая: [c.327]    [c.203]   
Смотреть страницы где упоминается термин Кристаллизация массовая: [c.5]    [c.187]    [c.149]    [c.4]    [c.5]    [c.67]    [c.114]    [c.114]   
Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.290 ]

Выращивание кристаллов из растворов Изд.2 (1983) -- [ c.4 ]

Основные процессы и аппараты Изд10 (2004) -- [ c.632 , c.634 , c.635 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.670 , c.672 , c.673 ]

Техника лабораторного эксперимента в химии (1999) -- [ c.384 ]

Процессы и аппараты химической технологии Часть 2 (1995) -- [ c.290 ]




ПОИСК





Смотрите так же термины и статьи:

Массовая



© 2025 chem21.info Реклама на сайте