Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дислокации наблюдение

    Подробные исследования роста кристаллов были предприняты Р. Каишевым на примере электрокристаллизации серебра. Наблюдения показали, что некоторые осадки отличаются спиральной симметрией и при нарушениях или сдвигах в кристаллической решетке кристаллизация сопровождается спиральными движениями ступени роста (рис. 95). Подобные представления о сдвиговой дислокации в кристаллической решетке объясняют возможность спирального роста граней кристаллов, когда он может происходить непрерывно, без образования двумерных зародышей. Причиной спирального роста грани является такое нарушение структуры кристаллической решетки, при котором ступень роста имеется лишь на части грани толщина этой ступени постепенно уменьшается к середине грани. При росте такая ступень не исчезает, дойдя до конца грани, как на идеальном кристалле, а все время поворачивается, образуя на грани все новые слои. [c.396]


    В нашей работе [ПО] хемомеханический эффект установлен впервые прямыми микроскопическими наблюдениями. Этот эффект наблюдавшийся на монокристаллах, проявился в пластифицировании и возникновении потока дислокаций к поверхности вследствие снижения поверхностного потенциального барьера при химическом взаимодействии с внешней средой и растворении металлов и минералов. [c.126]

    Выше рассматривался потенциал деформации для одной дислокации или одного дислокационного скопления из п дислокаций. Вместе с тем на практике всегда измеряют заряд поверхности или работу выхода электрона для макроскопического куска металла. Поэтому важно установить соотношение между локальными и нелокальными процессами, доступными наблюдению. [c.176]

    На стадии легкого скольжения основной вклад в деформацию дают дислокации, вышедшие на поверхность кристалла, что подтверждается экспериментально [10]. На этой стадии (площадка текучести на кривой напряжение — деформация) пластическая деформация растяжения отожженного технического железа [33] происходит путем лавинообразного течения, как это установлено наблюдениями линий скольжения на поверхности и методом дифракционной электронной микроскопии. По данным работы [34 ], в ходе легкого скольжения сдвиг не продолжается по тем плоскостям, где он уже происходил, так как легче активировать источники дислокаций в новых (неупрочненных) плоскостях скольжения. [c.46]

    Экспериментальные данные о необычной дефектной структуре границ зерен в наноструктурных материалах, полученных интенсивной пластической деформацией, наблюдение искажений кристаллической решетки вблизи границ зерен легли в основу развиваемых модельных представлений об атомной структуре и свойствах этих материалов [12]. Данные представления базируются на концепции неравновесных границ зерен, которая была введена в научную литературу в 70-80-х годах [110,111] и позднее стала широко использоваться при описаниях взаимодействий решеточных дислокаций и границ зерен, для анализа рекристаллизационных и деформационных процессов в поликристаллах [3,172]. Ниже будут кратко рассмотрены основные положения физики неравновесных границ, дано описание структурной модели нанокристаллов и ее развитие для понимания их необычных свойств. [c.87]

    Многочисленные наблюдения свидетельствуют, что движущие решеточные дислокации попадают в границы зерен при пластической деформации, а в рекристаллизационных процессах мигрирующие границы захватывают дислокации. Можно считать устано- [c.98]


    Дислокационное скольжение четко выявляется с помощью электронно-микроскопических наблюдений следов скольжения на поверхности образцов. Более того, изменение формы зерен однозначно свидетельствует о том, что внутризеренное скольжение дает основной вклад в общую деформацию образца. Тем не менее в теле зерен не наблюдается накопления дислокаций, хотя плотность последних достаточно высока (примерно Ю м ). [c.189]

    МИК роста. Однако морфологические наблюдения показывают, что активные акцессории порождаются лишь небольшим числом винтовых дислокаций. Причина такого несоответствия остается пока невыясненной. Возможно, здесь сказывается отравляющая роль примесей, а также то, что дислокации, локализованные между акцессориями, теряют способность быть активными источниками слоев роста. [c.95]

    Данную характеристику подтверждают наблюдения оптической анизотропии алмазов, являющейся структурно-чувствительным свойством кристаллов. Аномальное двулучепреломление в алмазе— оптически изотропном материале — обусловлено неравномерными напряжениями в матрице, возникающими в присутствии дислокаций, примесей и включений, блочности, при изменении параметров решетки и т. д. [c.401]

    Образование блоков в кристалле предотвращается выращиванием его на монокристаллическую затравку со стадией перетяжки , т. е. сужением диаметра кристалла в начале выращивания до 2—3 мм. Во всех кристаллах наблюдаются дислокации. В большинстве случаев эти дислокации направлены нормально к поверхности фронта кристаллизации. Это устанавливается наблюдением за расположением дислокационных ямок, выявленных травлением на серии поперечных срезов кристаллов. Дислокации, зарожденные в зоне резкой смены выпуклой формы фронта кристаллизации на плоскую, ориентируются чаще всего параллельно оси роста, проходя через весь кристалл. При выращивании кристаллов с коническим фронтом кристаллизации дислокации, ориентированные также перпендикулярно фронту кристаллизации, постепенно выводятся на поверхность кристалла. [c.207]

    Другая интересная проблема, касающаяся роста кристаллов, в особенности больших, состоит в том, необходима ли для образования двухмерных центров кристаллизации на совершенной кристаллической грани более высокая степень пересыщения, чем для роста неполностью укомплектованной грани. Еще в 1878 г. Гиббс предположил, что рост кристалла происходит посредством образования на кристаллической грани центров кристаллизации в виде однослойных островков, которые затем быстро растут до границ грани. Фольмер 2, Коссель з и Странский вывели теоретические уравнения для скорости роста, исходя из двухмерного механизма образования центров кристаллизации. Из этих уравнений следует, что для образования центра кристаллизации новой плоскости кристалла при кристаллизации металла из его пара необходимо, чтобы давление пара было на 25—50% выше, чем давление насыщения. Однако Фольмер и Шульц показали, что кристаллы нафталина, ртути и фосфора могут быть выращены из пара при пересыщении всего в 1%. Теоретически при таком пересыщении рост может иметь место только за счет атомов, попадающих на плоскую поверхность в соответствующее положение благодаря термическому возбуждению, и скорость роста должна быть в 10 ниже, чем наблюдаемая в действительности Такое колоссальное расхождение было в конце концов объяснено Фрэнком как результат роста по винтовой дислокации, которая схематически изображена на рис. 13. Очевидно, что кристалл с такого рода несовершенством может расти посредством выдвигающихся по спирали плоскостей, и не возникает никакой необходимости в образовании центров кристаллизации на плоской поверхности. Описано много случаев визуальных наблюдений роста кристаллов по спирали. При конденсации из [c.159]

    Электронно-микроскопические данные по наблюдению кристаллических решеток и краевых дислокаций приведены в главе III. [c.168]

    На оставшейся после определения толщины пленки части образца проводят микроструктурные исследования. Предварительно поверхность эпитаксиальной пленки обезжиривают спиртом. При различных увеличениях микроскопа сначала изучают особенности микроструктуры пленки, не прибегая к травлению. При этом возможно наблюдение террасообразной структуры, несовершенств, обусловленных включениями и нерегулярностью роста. Наиболее характерные детали поверхности рекомендуется сфотографировать. Затем поверхность пленки подвергают селективному травлению для выявления дефектов упаковки и дислокаций. Составы травителей и методика травления приведены в работе 12. На эпитаксиальной пленке предлагается определить плотность дефектов упаковки [светлые плоские треугольники при ориентации (111)1 и дислокаций (темные треугольные ямки травления) (см. работу 12). [c.150]

    Сопоставим данные оценочного расчета с экспериментальными для максимальной величины эффекта Л1 = 255 мкА/см (рабочая поверхность 0,314 см ) при Лт = 190 МН/м (19 кгс/мм ) (см. рис. 8). Принимая [29] для железа значения а= 10 см и Л/щах = 10 см , по кривой рзстяжения (см. рис. 8), используя формулы (71) и (79), находим оценку п =< 10, что не противоречит результатам электронномикроскопических наблюдений. Действительно, прямое электронномикроскопическое наблюдение [51 ] дислокационной структуры деформированных в различной степени железных фольг показало, что при е = 5% образуются скопления и нагромождения дислокаций, переходящие затем при е>8-ьЮ% в разритую ячеистую структуру, причем для е = 10% плотность дислокаций N = см . Устано- [c.68]


    С помощью специальной термообработки можно сделать так, что дислокации будут огибать частицы а2. При этом восстанавливается однородность скольжения [200], но сохраняется его планарный характер. Можно было бы ожидать, что перестаривание аг оказывает такое же влияние на поведение дислокаций. Действительно, в работе [202] сообщалось о повышении стойкости к КР при иерестаривании, однако последующие исследования не подтвердили эти наблюдения [192]. Таким образом, сохранение планарности скольжения (даже ири огибании дислокациями частиц аг) означает и сохранение восприимчивости к КР. Этот вывод подтверждается поведением высокоалюминиевых титановых сплавов, которые остаются склонными к КР после закалки, подавляющей образование аг, но не влияющей на характер скольжения [191]. При гетерогенном образовании аг, например в бинарных силавах Т1—5п (в частности, в Т з5п), восприимчивость к КР повышается в меньшей степени [203], но силавы, содержащие А1 + 5п, в которых происходит гомогенное образование Т1з (А1, 5п) [190], обладают плохой стойкостью к КР [188]. Термообработка некоторых других а-изоморфных снлавов, например, содержащих индий, может, по-видимому, подавлять образование аг и повышать стойкость к КР [192]. [c.98]

    Было показано, что образование выделений а2-фазы увеличивает легкость зарождения трещин под действием среды и скорость распространения трещин. Такие выделения также увеличивают вероятность разрущения сколом в период субкритического роста трещин. Установлено, что в случаях, где выделения аг-фазы срезаются, скольжение в (а + аг)-структурах происходит в очень узких полосах скольжения со значительными смещениями в каждой полосе. Это может указывать еще раз на важность характеристик скольжения при определении чувствительности к КР-Наблюдения [33] наводят на мысль провести эксперимент для определения важности характера скольжения или наличия Т1зА1. Этими исследователями было показано, что определенное распределение аг-фазы изменяет тип взаимодействия дислокации с частицей от срезания до огибания. Таким образом, если Т1зА1 изменяет характер скольжения, то такое ее распределение должно приводить к меньщей чувствительности к КР, чем в случае одно фазных а или двухфазных структур (аЧ-аг), в которых происходит срезание частиц дислокациями. Некоторое доказательство в достоверности этого имеется, но требуются более тщательные исследования. [c.409]

    Прямые наблюдения границ зерен, выполненные методом высокоразрешаюшей просвечивающей электронной микроскопии, дают доказательства их специфической дефектной структуры в наноструктурных материалах вследствие присутствия атомных ступенек и фасеток, а также зернограничных дислокаций. В свою очередь, высокие напряжения и искажения кристаллической решетки ведут к дилатациям решетки, проявляющимся в изменении межатомных расстояний, появлении значительных статических и динамических атомных смещений, которые экспериментально наблюдались в рентгеновских и мессбауэрографических исследованиях. [c.86]

    В литературе до сих пор появляются сообщения, в которых пытаются поставить под сомнение дислокационную природу линейных дефектов в синтетическом кварце. В качестве основных доводов выдвигаются чрезмерно большая ширина этих дефектов и их необычно сильная травимость в таких растворах, как плавиковая кислота, приводящая к образованию протяженных каналов длиной до нескольких десятков миллиметров. Однако оба указанных эффекта могут получить разумное объяснение, если предположить, что ростовые дислокации активно адсорбируют такие примеси, как вода и щелочные металлы, что должно привести к редкому локальному повышению растворимости в области, прилегающей к ядру дислокации. Основным аргументом, подтверждающим дислокационную природу линейных дефектов, является, конечно, наблюдающийся дифракционный контраст. Приведем еще одно наблюдение, свидетельствующее о дислокационной природе этих дефектов. Часто в начальный период ввода автоклава в режим роста наблюдается интенсивное растворение затравочных пластин. Причем растворяются в основном области, прилегающие к линейным дефектам, пронизывающим затравку. Растворение может быть столь интенсивным, что в затравочной пластине образуется множество дырок , так что она приобретает вид ажурного дырчатого образования. Последующее наращивание кристалла приводит к залечиванию большинства повреждений и формированию весьма совершенных кристаллов. При этом, если травление было сильным, то часть дислокационных дырок остается в виде вытянутых газожидких включений. Однако, если отдельное включение порождается одиночным линейным дефектом в затравке, то, как правило, в нарастающем кристалле от этого включения также исходит лишь один линейный дефект, что, несомненно, свидетельствует в пользу его дислокационной природы. [c.95]

    В результате исследования ростовых дислокаций в синтетическом кварце методом термодекорирования были выявлены механизмы формирования однородных бездислокационных областей в природных кварцевых кристаллах. В частности, было показано, что дислокации наследуются из затравок, изменяя свое положение в наросшем слое в соответствии с принципом создания минимума свободной энергии, ориентируясь по направлениям, близким к нормам и поверхности растущей грани. Значительное их количество зарождалось также над поверхностью макроскопических примесных сегрегатов, оседающих на поверхности граней растущих кристаллов, а также в местах зарастания капиллярных и щелевидных каналов и трещин, вероятно, за счет некогерентного срастания встречных тангенциально распространяющихся микроскопических слоев, перекрывающих полости и включения посторонних твердых фаз. На основе этих наблюдений были разработаны и внедрены в промышленную практику технологические приемы получения бездислокационного оптического кварца, а также произведена целенаправленная подготовка кристаллов и препаратов для рентгенотопографических исследований. Это позволило экспериментально установить наличие ростовых дисло-164 [c.164]

    Влияние дислокаций на свойства кристаллических тел. Понятие о дислокациях было введено в 30-х годах XX в. Я- И. Френкелем, Д. И. Тейлором, Е. Орованом и др. Теория дислокаций, разрабатываемая впоследствии многими учеными, оказалась чрезвычайно плодотворной и позволила объяснить особенности многих важных свойств кристаллических тел и процессов с их участием. Теоретические предсказания, касающиеся влияния этого типа несовершенств решетки на свойства кристаллических тел, были блестяще подтверждены практически. Более того, в 50-х годах наличие в кристаллах дислокаций было доказано их непосредственным наблюдением. В частности, краевые дислокации в виде лишних атомных [c.96]

    Вблизи ядра дислокации обычно наблюдается скопление примесей ( облако Коттрелла ). Иногда примесей скапливается такое количество, что они выделяются как самостоятельная фаза в виде коллоидных частиц. Это может быть обнаружено даже просто в проходящем свете под микроскопом. Обычно же требуются более сложные методы наблюдения, чаще всего фазово-контрастная микроскопия (см. Физический энциклопедический словарь — ФЭС, 1962—1966 гг.). [c.7]

    Существенный вклад в образование блоков и малоугловых границ вносят также избыточные компоненты кристаллизуемого вещества, которые, образуя в монокристалле твердые частицы иной фазы, являются источником зарождения блоков (см. рис. 28). Методом рентгеновского микроанализа было установлено, что при выращивании монокристаллов иттрий-алюминиевого граната механические частицы, как отмечалось выше, являются кристалликами алюмината иттрия. К аналогичному результату пртели исследованм двулучепреломления алюмината иттрия с помощью компенсатора Берека в монохроматическом свете (Л = О, 586 мкм). По характеру поля просветления была определена плоскость скольжения дислокаций, которая является плоскостью симметрии шестилепестковой розетки. (На рис. 31 видны только четыре из них две розетки лежат в перпендикулярном к наблюдению направлении и поэтому не видны). [c.48]

    Применение электронной микроскопии позволило показать некоторые тонкие детали структуры кристаллов, в отдельных случаях проследить характерные черты процессов их роста и разрушения. Одним из наиболее важных достижений в этой области, имеющем принципиальное значение для развития представлений о структуре кристаллов, является установленная недавно возможность непосредственного наблюдения в электронном микроскопе плоскостей кристаллических решеток и их дефектов — дислокаций. Всестороннее изложение вопроса о дислокациях в кристаллах имеется в книге Рида [1], а также в обзорных статьях Вонсовского и Орлова [2] и Инденбома [3]. [c.167]


Библиография для Дислокации наблюдение: [c.187]   
Смотреть страницы где упоминается термин Дислокации наблюдение: [c.412]    [c.412]    [c.4]    [c.97]    [c.71]    [c.99]    [c.141]    [c.407]    [c.412]    [c.70]    [c.616]    [c.98]    [c.204]    [c.263]    [c.23]    [c.50]    [c.18]    [c.18]    [c.185]   
Химия несовершенных ионных кристаллов (1975) -- [ c.92 ]




ПОИСК





Смотрите так же термины и статьи:

Дислокация



© 2025 chem21.info Реклама на сайте