Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические процессы, сопровождающие кристаллизацию

    Во многих случаях в одном аппарате может одновременно протекать несколько процессов, например, диффузионный процесс кристаллизации сопровождается процессом теплообмена, химический процесс может протекать одновременно с массообменом и теплообменом и т. д. Такое совместное протекание процессов осложняет их изучение и делает несколько условной приведенную классификацию. [c.7]


    Все процессы, имеющие значение в химии, — химические реакции, реакции диссоциации, растворение и кристаллизация, фазовые переходы — сопровождаются различными энергетическими эффектами. Скрытая энергия вещества может выделяться в виде механической, световой, электрической или тепловой энергии. Столь же часто происходит и обратный переход различных видов энергии в скрытую энергию вещества. Механическая, электрическая и световая энергия, в свою очередь, легко и полностью переходят в теплоту. Поэтому для энергетической характеристики химических процессов наиболее целесообразно измерять тепловые эффекты (Q). Величина Q зависит от природы происходящего процесса, состояния исходных и полученных веществ и условий протекания процесса. [c.51]

    Особое место среди гетерогенных химических процессов занимают топохимические (или твердофазные процессы), участниками которых ЯВЛЯЮТСЯ твердые тела. Топохимические превращения обычно сопровождаются чисто физическими процессами, как, например, фазовые переходы (сублимация и конденсация, плавление и затвердевание, кристаллизация и амор- [c.279]

    Сушка неорганических материалов, т. е. удаление из них воды, может сопровождаться следующими термическими и химическими процессами полиморфными превращениями дегидратацией кристаллогидратов распадом двойных, тройных и комплексных соединений образованием полимерных веществ гидролизом диссоциацией, иногда с выделением газообразных компонентов кристаллизацией плавлением, например плавлением кристаллогидратов, появлением эвтектических расплавов (при сушке двух- и многокомпонентных смесей) наконец, различными химическими взаимодействиями между компонентами высушиваемого материала (вследствие его нагревания, увеличения активности жидкой фазы), которым могут сопутствовать растворение и кристаллизация веществ. [c.356]

    Процессы растворения, экстрагирования, выщелачивания на практике чаще всего сопровождаются кристаллизацией из растворов, т. е. выделением из раствора в твердом состоянии растворенных твердых веществ, их гидратов или новых соединений, полученных в результате химических реакций в растворе. [c.175]

    Переработка свеклы в сахар-это сезонное производство, и поэтому на сахарных заводах стараются сократить технологический цикл за счет интенсификации работы оборудования. Однако этому мешает пена. Обильная пена сопровождает почти все технологические этапы сахароварения. Именно пена причина того, что нарушается ритмичность производства, замедляются основные химические и физико-химические процессы, снижается производительность оборудования. Пена замедляет процессы диффузии при очистке и осветлении соков, их выпаривание, тормозит уваривание продукта и кристаллизацию сахара в мешалках. В соках сахарной свеклы содержатся поверхностно-активные вещества и стабилизаторы пены они и являются причиной обильного пенообразования. Основной пенообразователь в сахарном производстве-свекловичный сапонин-высокоактивный ПАВ. Стабилизаторами пены служат продукты разложения белковых веществ. Поэтому свекловичные пены чрезвычайно устойчивы. [c.154]


    В отличие от классических процессов физического растворения растворение фосфатов неизбежно сопровождается образованием новых солей, выделяющихся в твердую фазу. При этом, если процесс физического растворения полностью обратим, т. е. возможна кристаллизация растворившегося вещества из раствора, то физико-химический процесс растворения, каким является растворение фосфатов в минеральных кислотах, необратим, т.е. выделить растворившееся вещество из полученного раствора кристаллизацией невозможно. [c.36]

    Широко распространенными аппаратами химической промышленности, в которых процесс может проводиться в условиях вакуума, являются выпарные и кристаллизационные. Процесс выпаривания применяется в химических производствах для сгущения растворов или для полного удаления растворителей. В случае полного удаления растворителей выпаривание сопровождается кристаллизацией. При выпаривании чаще всего происходит кипение (а не испарение) раствора, находящегося в аппарате, и удаление образующегося пара. Выпаривание применяется главным образом в тех случаях, когда образующиеся пары являются малоценными (за исключением их тепловых свойств) по сравнению с остающейся массой. Кроме того, иногда выпаривание- служит для выделения в чистом виде растворителя (например, при получении пресной воды). [c.121]

    Смешение - процесс взаимодействия двух (и более) объемов подземной воды с различной минерализацией и компонентным составом. Результат - формирование подземной воды нового химического состава, обусловливаемого составом и объемами смешивающихся вод. Процесс смешения часто сопровождается кристаллизацией [c.13]

    Превращения в системе твердое тело — жидкость (газ). Превращения с участием газа или жидкости и кристаллической твердой фазы называются топохимическими, т. е. -процессы в этом случае сопровождаются возникновением или исчезновением твердых фаз. Можно указать много таких процессов, имеющих промышленное значение, например кристаллизация — выпадение осадков из растворов с одновременной химической реакцией, термическая диссоциация твердых тел и обратный ей процесс, восстановление окислов металлов, коррозионные процессы, сжигание твердого топлива и т. д. [c.258]

    Изложенное означает, что энтропия является мерой неупорядоченности состояния системы. Она растет не только с повышением температуры, но и при плавлении (и возгонке) твердого вещества, при кипении жидкости, т. е. при переходе вещества из состояния с меньшей энергией в состояние с большей энергией. Ростом энтропии сопровождаются и процессы расширения, например газа, растворения кристаллов, химическое взаимодействие, протекающее с увеличением объема, например диссоциация соедннения, когда вследствие роста числа частиц неупорядоченность возрастает. Наоборот, все процессы, связанные с увеличением упорядоченности, такие как охлаждение, отвердевание, конденсация, сжатие, кристаллизация из растворов, химическая реакция, протекающая с уменьшением объема, например полимеризация, сопровождаются уменьшением энтропии. Возрастание энтропии вещества при повы- [c.177]

    Взаимодействие двух соседних структурных образований в углеводородных системах неоднородного состава может происходить по связям между их центральными или периферийными областями. Первый случай в большей степени связан с эффектами кристаллизации в низкотемпературной области. Взаимопроникновение элементов периферийных областей при этом происходит на физическом уровне и сопровождается процессами окклюдирования отдельных частиц или их иммобилизации в межчастичном пространстве. Второй случай, в основном проявляется при химическом взаимодействии элементов системы, когда взаимодействуют близлежащие частицы с образованием принципиально новых, до определенного предела температур обратимых, а затем необратимых структурных элементов. [c.176]

    Таким образом, в живых организмах структурообразование сопровождается разрывом и образованием новых химических связей, тогда как в процессе кристаллизации межатомные связи не затрагиваются. Кристаллы в условиях отвердевания приходят в термодинамическое равновесие с окружающей средой, когда вещество находится при данной температуре на самом низком энергетическом уровне. Продукты же структурообразования, идущего в организмах, например целлюлоза, белок и другие, далеки от термодинамического равновесия с окружающей средой. Они обладают повышенным запасом энергии, накопленной в виде энергии связи в их неплотных структурах. Жесткая направленность ковалентной связи не позволяет атомам и атомным группам, находящимся в момент структурообразования на высоком энергетическом уровне, переходить на самый низкий энергетический уровень, отвечающий [c.7]


    Стеклообразное состояние по сравнению с кристаллическим является термодинамически неустойчивой формой состояния вещества, т. е. метастабильной. Поэтому повыщение подвижности частиц в стекле при нагревании вызывает его кристаллизацию. Процесс же перехода из жидкого состояния в стеклообразное и наоборот не сопровождается существенными изменениями в характере пространственного расположения частиц, и резкого скачкообразного изменения свойств при этом не происходит. Все стеклообразные вещества независимо от их химического состава обладают целым рядом общих свойств. Назовем важнейшие из них. [c.189]

    Изложенное означает, что энтропия является мерой неупорядоченности состояния системы. Энтропия растет не только с повышением температуры, но при переходе вешества из состояния с меньшей энергией в состояние с большей энергией, например при плавлении (и возгонке) твердого вещества, при кипении жидкости. Ростом энтропии сопровождаются и процессы расширения газа, растворения кристаллов, химическое взаимодействие, протекающее с увеличением объема, например диссоциация соединения, когда вследствие роста числа частиц их неупорядоченность возрастает. Наоборот, все процессы, связанные с увеличением упорядоченности системы, такие как охлаждение, отвердевание, конденсация, сжатие, кристаллизация из растворов, химическая реакция, протекающая с уменьшением объема, например полимеризация, сопровождаются уменьшением энтропии. Возрастание энтропии вещества при повышении температуры иллюстрирует рис. 2.5. Влияние давления на энтропию можно показать на следующем примере при Т - 500 К и р-101 кПа энтропия аммиака составляет 212 Дж/(моль К), при 7 -500 К и р-30300 кПа эта величина равна 146 Дж/(моль-К), т. е. с увеличением давления энтропия снижается, но незначительно. [c.189]

    Кристаллизация из газовой фазы — это конденсация молекул газа с образованием кристаллического вещества, минуя жидкую фазу. Физической кристаллизацией называют образование кристаллов из молекул, находящихся в одно- или многокомпонентной газовой фазе. Химическая кристаллизация — это возникновение кристаллов вследствие пересыщения газовой фазы новым веществом, образующимся в результате химической реакции между газообразными компонентами. Кристаллизация из газовой фазы в неизменном объеме, вследствие конденсации вещества, сопровождается понижением давления. При физической кристаллизации процесс конденсации (обратный сублимации) достигается при понижении температуры или при сжатии (уменьшении объема) газа. Для химической кристаллизации необходимо смешение реагирующих газов. [c.262]

    Гетерогенные равновесия, при которых процесс перехода веществ из одной фазы в другую не сопровождается изменением их химического состава, называются фазовыми равновесиями. К ним относятся испарение, конденсация, плавление, кристаллизация, сублимация, полиморфные превращения, растворение и другие процессы, широко осуществляемые в технологии. [c.177]

    Физико-химические свойства разбавленных растворов, такие, как осмотическое давление,и давление пара растворов, температура кипения и температура кристаллизации растворов, значительно отличаются от тех же свойств растворов более высокой концентрации. В разбавленных растворах относительная доля молекул растворителя, связанного в виде сольватов, невелика, образование таких растворов сопровождается небольшими тепловыми эффектами, поэтому свойства их можно считать весьма мало зависящими от природы растворенного вещества. В более концентрированных растворах увеличивается доля молекул растворителя, участвующих в процессах сольватации, уменьшается доля молекул несвязанного растворителя, тепловые и объемные эффекты,, сопровождающие процесс растворения, становятся более значительными, а сами свойства растворов в значительной степени зависят от химических свойств растворенного вещества. [c.103]

    Берцелиус [3, 61] первым высказал мысль, что продукты полимеризации, т. е. полимеры, представляют собой вещества, имеющие тот же процентный состав, что и исходные вещества, но отличающиеся от них по молекулярному весу. Голлеман [32] описывал полимеризацию как процесс, при котором две или больше реагирующие молекулы соединяются вместе таким образом, что исходное вещество можно регенерировать обратно. Штаудингер [79, 80], критикуя утверждение Голлемана, показал, что этот критерий совсем не существенен для процесса полимеризации, потому что может быть менее глубокая степень разложения, чем деполимеризация в мономолекулярное состояние. Другими словами, полимеризация не всегда сопровождается деполимеризацией и если даже сопровождается, то деполимеризация не обязательно регенерирует исходное вещество. Обратимость может быть неполной. Штаудингер рассматривает полимеризацию как взаимодействие двух или более молекул одного соединения с образованием продукта, имеющего тот же состав, но больший молекулярный вес. Сделана попытка [29] подразделить полимеризацию на физический полиморфизм (так же, как в случае серы) и полимерию с этой точки зрения полимеризация рассматривалась как процесс, который включает структурно-химические изменения. Предполагалось, что процессы полимеризации аналогичны процессам изомеризации в том смысле, что участвующее вещество совершенно изменяется. Структурно-химические изменения сообщают полимеру особую характеристику и отражаются на изменяемости его физико-химических свойств. Представления о полимеризации не всегда отличаются от представлений об ассоциации. Если первичные частицы рассматривать как химические молекулы, то удвоение молекулярного веса можно рассматривать как изменение степени -агрегации и образование таких молекулярных агрегатов будет подчиняться законам кристаллизации из насыщенных растворов. [c.634]

    Процессы производства минеральных солей разнообразны соответственно огромному ассортименту солей. Однако технологические схемы производства почти всех солей включают типовые процессы, общие для солевой технологии. Типовые процессы солевой технологии измельчение твердых материалов (сырья, спека), обогащение сырья, сушка, обжиг, спекаиие, растворение, выщелачивание, отстаивание, фильтрация, выпаривание, охлаждение растворов, кристаллизация. Эти процессы характерны для любого солевого производства. В технологии солей часто применяются также процессы абсорбции и десорбции. Большинство типовых процессов основано на физических методах переработки, особенно на стадиях подготовки сырья и окончательной доработки продукта. Образование же минеральных солей происходит в результате процессов, основанных на химических реакциях при обжиге, спекании, выщелачивании, абсорбции. Выщелачивание природного сырья (или спеков) сопровождается реакциями обменного разложения. При обжиге идут окислительно-восста-новительные реакции. Хемосорбционные процессы, лежащие в основе синтеза солей из полупродуктов химической промышленности, сопровождаются реакциями нейтрализации. [c.141]

    Выражение термодинамического сродства через свободную энергию шозБОЛяет нам обобщить химические реакции, подводя под категорию реакций и многие физические процессы, и, в частности, изменения агрегатных состояний вещества. С химическими реакциями эти процессы имеют следующие общие черты во-первых, в результате изменений агрегатных состояний получается вещество с другими физическими свойствами во-вторых, эти процессы связаны с поглощением или выделением теплоты в-третьих, как, например, при кристаллизации переохлажденной жидкости, мы имеем процесс, ведущий к устойчивому равновесию, причем в адиабатных условиях этот процесс, как показано, ведет к возрастанию энтропии, а в изотермических условиях, подобно химическим реакциям, сопровождается уменьшением свободной энергии. Мы можем, таким образом, изменение агрегатных состояний рассматривать как некоторый предельный случай химических реакций, когда количество другого реагирующего вещества равно нулю. [c.166]

    Вероятная причина этого эффекта заключается в образовании в ходе реакции плотного слоя твердого продукта реакции, сохраняющего структуру кристаллической решетки исходной фазы и оказывающего сопротивление удалению водяного пара из зоны реакции. На участке АБ (рис. 2.1.20) наблюдается увеличение толщины тормозящего слоя и соответствующее уменьшение скорости реакции. На участке БВ происходит разрыхление плотного слоя и уменьшение его толщины вследствие кристаллизации твердого продукта реакции. Процесс сопровождается увеличением скорости реакции. На участке В Г толщина тормозящего слоя стабилизируется, и дальнейшее изменение скорости реакции от давления приходит в соответствие с обицши правилами химического равновесия. [c.438]

    В ряде экспериментальных исследований, выполненных под руководством Е. Е. Сегаловой > излагаемых в этом разделе, был установлен единый механизм твердения в химическом процессе образования новой фазы. В проведении этих работ участвовали сотрудники и аспиранты Е. А. Амелина-Шабанова, Е. П. Андреева, Е. П. Арсентьева, Т. К. Бруцкус, Ду Ю-жу, В. Н. Измайлова, С. И. Конторович, О. И. Лукьянова, 3. Н. Маркина, Р. Р. Саркисян, Е. С. Соловьева, Ежи Стоклоса, 3. Д. Туловская, Чжоу Пин-и [43—64]. Развитые представления сводятся в основном к тому, что кристаллизация новой фазы из пересыщенного раствора в определенных условиях пересыщения может сопровождаться образованием дисперсной пространственной структуры твердения. Повышение прочности кристаллизационной структуры при твердении определяется двумя противоположными процессами упрочнением структуры в результате срастания возникающих кристалликов и их роста и местными разрушениями структуры под действием развивающихся внутренних напряжений. [c.343]

    Изучение растворимости веществ началось в XVIII веке. Начало учению о растворах положил М. В. Ломоносов. Еще в 1744 г. он изучал процесс растворения веществ в воде и определил растворимость ряда солей. М. В. Ломоносов установил влияние температуры на растворимость, явление кристаллизации, тепловые явления, открыл, что растворы замерзают при более низкой температуре, чем растворитель, и т. д. Он первый указал, что процесс растворения сопровождается энергетическим эффектом, указал на различие процессов растворения, протекающих с выделением или поглощением тепла. Так, растворение металлов в кислотах, являющееся химическим взаимодействием, сопровождается выделением тепла при выпаривании таких растворов выделяется соль данной кислоты. При растворении солей в воде, при котором не имеет места химическое взаимодействие, поглощается тепло при выпаривании такого раствора вновь кристаллизуется растворенная соль. [c.54]

    Генерирование низкочастотного переменного тока коллонщными системами. Как известно [52-53], химические реакции сопровождаются генерированием в колебательном контуре высокочастотной ЭДС и высокочастотного тока. Однако это свойство реагирующих веществ, характерное для взаимодействий на атомно-молекулярном уровне, не рассматривалось с позиции процессов структурообразования, таких, например, как коагуляция, конденсация и кристаллизация. [c.415]

    Энтропия также увеличивается при процессах расширения, растворения кристаллического вещества, при химических реакциях, првтекающих с увеличением объема (например, процесры диссацнации). В этнх случаях вследствие роста числа частиц неупорядоченность (беспорядок) возрастает. Напротив, процессы, связанные с увеличением упорядоченности (порядка в относительном расположении частиц),— охлаждение, конденсация, кристаллизация из растворов, сжатие, химические реакции, протекающие с уменьшением объема (например, процессы полимеризации),— сопровождаются уменьшением энтропии. Энтропию, как И тепловые эффекты, принято относить к определенным условиям. Общепринятыми являются /=25 С и Р=1 атм при этом газы считают идеальными, а для растворов принимают их состояние [c.207]

    Рост кристаллов кварца в щелочных растворах нельзя отождествлять с процессами растворения и последующей перекристаллизации в обычном понимании этого явления. Растворение кварца сопровождается химической реакцией перехода диоксида кремния в соли кремневой кислоты — силикаты. Образовавшийся в результате такого взаимодействия силикат переходит в раствор в больших или меньших количествах в зависимости от условий протекания процесса. Именно этот силикат в процессе роста кристаллов служит источником питания (или транспортирующим агентом) затравочной пластинки диоксидом кремния, В ходе указанного акта щелочной силикат должен претерпевать разложение на свободную щелочь и диоксид кремния, который служит строительным материалом для растущего кристалла. Следовательно, процесс выращивания кварца состоит из двyx противоположных стадий а) образования щелочного силиката в результате взаимодействия исходного кварцевого сырья со щелочью б) разложения образовавшегося силиката с выделением ЗЮг и ее кристаллизацией. Обе эти стадии представляют собой химические реакции и зависят от природы щелочи, концентрации ее в растворе и от внешних условий — температуры, давления и массообмена. [c.43]

    Вакуум используется для химической очистки расплава от растворенных газов, посторонних примесей, обладающих высокой упругостью пара, и продуктов термической диссощшции. Глубина вакуума определяется величиной упругости пара кристаллизуемого вещества в расплавленном состоянии. Наиболее часто используется вакуум порядка 5 10 тор. С целью снижения интенсивности испарения расплава применяется нейтральная атмосфера (гелий, аргон, азот), поскольку для этих газов разработаны достаточно эффективные способы химической очистки. Восстановительная атмосфера используется для предотвращения окислительных реакций. Например, при выращивании монокристаллов флюорита СаРг атмосфера фтористого водорода препятствует развитию реакций гидратации с образованием частиц типа СаНСОз, а выращивание металлических монокристаллов в атмосфере водорода позволяет получать бескислородные монокристаллы. Окислительная атмосфера используется для компенсации потери кислорода при выращивании монокристаллов-оксидов [16]. Применение окислительной атмосферы, однако, ограничено интенсивным окислением материала контейнера и элементов нагревательной системы кристаллизационной установки. Поэтому обычно используется либо вакуум, либо нейтральная атмосфера. Компенсацию кислорода осуществляют путем отжига в кислородсодержащей атмосфере при температуре (1/2 1/3) Год, где Тпл — температура плавления. Эту операцию называют кислородным отжигом. Экспериментальные исследования свидетельствуют о том, что нарушение состава оксидов в сильной степени зависит от интенсивности реакций их термической диссоциации [17]. Эти реакции сопровождают как процессы плавления, так и кристаллизации. [c.15]

    Г В зависимости от условий кристаллизации, концентрации, химического строения и молекулярной массы полимера молекулы могут складываться в разных кристаллографических направлениях. Формирование тех или других плоскостей складывания контролируется эпергетичегкой выгодностью такого процесса. Например, в монокристаллах ПЭ молекулы могут складываться в плоскостях (ПО) (плоскости с наиболее плотной упаковкой), в плоскостях (100)—следующих по численности находящихся в них атомов), а также и в некоторых других. Направления складок определяют внешнюю форму кристаллов, так как рост их происходит в направлении, нормальном к плоскостям складывания. При кристаллизации ПЭ из разбавленных растворов могут быть получены ромбовидные кристаллы, шестигранные, кристаллы в виде усеченного ромба. Кристаллы с различными поверхностями роста могут быть выращены и из других полимеров (ПОМ, найлоны и т. д.). Закономерный сдвиг складки в кристаллографическом направлении [001] по мере ее удаления от центра кристаллизации приводит к образованию кристаллов в виде полых пирамид форма последних характерна для многих полимерных кристаллов. Они отличаются лишь углом при вершине пирамиды. В связи с этим высаживание на плоскую подложку для ЭМ исследования сопровождается обычно коллапсом кристаллов, что приводит к возникновению трещин и морщин на их поверхности (рис. I. 5, б). [c.36]

    Обычно в синтезе используют такие высокореакционноспособные реактанты, как свежеосажденные гели в водных растворах щелочи с высоким pH. Сильное пересыщение при низкой темпера1урс приводит к обильному образованию зародышей. В этих условиях в структуру цеолита включаются вторичные структурные единицы, например кольца из четырех тетраэдров ТО4 вместе с катионами и молекулами воды. В многочисленных работах показано, что осажденные гели подвергаются старению, меняющему их химическую структуру и физические свойства. Такое старение, в процессе которого, по-видимому, образуются соответствующие структурные единицы, способствует появлению зародышей и росту кристаллов цеолитов. Обычно старение проводят при более низкой температуре (—25°С), чем кристаллизацию ( 50—200°С). При кристаллизации в первую очередь возникают слабо упорядоченные структуры, образование которых сопровождается меньшим изменением энтропии. Эти широкопористые цеолиты с беспорядочно расположенными обменными катионами и молекулами воды по своим структурным свойствам и энтропии мало отличаются от неупорядоченных гелей. С повышением температуры синтеза возрастает скорость реакций, ведущих к истинному равновесию, и начинают преобладать более [c.18]

    Мощные ультразвуковые колебания используются также для интенсификации ряда технологических процессов кристаллизации расплавов и получения высококачественных сталей, расщепления высокополимерных соединений при производстве каучуков, расщепления целлюлозы в бумажном производстве, ускорения дубления кожи, обезжиривания и крашения тканей, для осаждения мелких частичек дыма заводских труб и др. Ряд химических реакций и окислительных процессов ускоряется под действием ультразвука. Ультразвуковые волны достаточной интенсивности сопровождаются и рядом биологических еффектов. Микроорганизмы и бактерии погибают под действием ультразвука, при этом особенно сильное действие ультразвук оказывает на живые организмы, когда распространение звука в жидкости сопровождается явлением кавитации. Производятся опыты по пастеризации молока с помощью ультразвука, сохранению пищевых продуктов. В медицине производятся опыты по лечению ряда болезней, злокачественных опухолей и т. д. [c.10]

    Наиболее интенсивно коррозия при процессах третьего вида развивается в условиях, когда кристаллизация новообразований сопровождается значительным увеличением объема твердой фазы за счет образования солей-гидратов с большим содержанием кристаллизационной воды. Типичным примером коррозии при процессах третьего вида является разрушение бетона в сульфатсодержащих средах, когда в результате химического взаимодействия между агрессивной средой и алюминатными составляющими цементного камня в порах бетона образуется кристаллический гидросульфоалюминат кальция, молекула которого содержит в своем составе 32 молекулы химически связанной воды и по молекулярному объему во много раз превосходит суммарный молекулярный объем веществ, вступивших в реакцию. [c.121]

    С течением времени величина и заряд коллоидных частиц претерпевают изменения — наблюдается старение, связанное с процессами перезарядки, коагуляции и т. п. Наличие этих процессов создает известные трудности для определения физико-химического состояния изотопа в растворе и измерения его количества. К тому же поведение радиоактивного изотопа различно в условиях образования истинных коллоидов и псевдоколлоидов. С образованием коллоидных форм может быть связано аномальное поведение мик-рокомионента при кристаллизации, экстракции и ионном обмене. Процесс коллоидообразования следует учитывать также при определении растворимости малорастворимых соединений, особенно в случаях, когда растворение сопровождается гидролизом. [c.143]

    Кристаллизация бихромата калия (так же как и бихромата натрия) сопровождается инкрустацией охлаждающих поверхностей выделяющимися кристаллами. Для устранения или уменьшения инкрустации требуется осуществлять интенсивное перемешивание раствора, перемещающее процесс образования и роста кристаллов с охлаждающих поверхностей в массу раствора, и обеспечить малую разность температур между раствором и охлаждающей водой. Наиболее легко это достигается в кристаллизаторах непрерывного действияИспользование вакуум-кристаллизаторов приводит к получению мелких кристаллов, как и при чрезмерно интенсивном перемешивании раствора в механических кристаллизаторах. Кристаллизация бихромата в аппаратах с охлаждением и перемешиванием раствора барботирующим воздухом исключает инкрустацию, дает возможность использовать для сооружения кристалли-ватора или его облицовки нетеплопроводные, но химически стойкие [c.610]


Смотреть страницы где упоминается термин Химические процессы, сопровождающие кристаллизацию: [c.11]    [c.197]    [c.228]    [c.407]    [c.241]    [c.168]    [c.179]    [c.111]    [c.678]   
Смотреть главы в:

Высокотемпературная кристаллизация из расплава -> Химические процессы, сопровождающие кристаллизацию




ПОИСК





Смотрите так же термины и статьи:

Кристаллизация процесс

Физико-химические процессы, сопровождающие плавление и кристаллизацию вещества



© 2025 chem21.info Реклама на сайте