Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эмиссионная фотометрия пламени

    Атомно-эмиссионная фотометрия пламени [c.35]

    Предлагаемое практическое руководство обобщает опыт преподавания физических и физико-химических методов анализа, накопленный на кафедре аналитической химии Московского государственного университета. Руководство включает два больших раздела— спектроскопические и электрохимические методы. В спектроскопические методы включены методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентный в электрохимические — потенциометрический (в том числе с использованием ионоселективных электродов), кулонометрический, полярографический и амперометрический методы. Наряду с перечисленными методами в современных аналитических ла- бораториях используют и другие методы атомно-флуоресцентный анализ, рентгеновские методы, искровую и лазерную масс-спектрометрию, радиоспектроскопические, ядерно-физические и радиохимические методы, однако ограниченное число учебных часов не позволяет включить их в данное руководство. Изучение этих курсов предусмотрено [c.3]


    МЕТОД ЭМИССИОННОЙ ФОТОМЕТРИИ ПЛАМЕНИ (пламенной фотометрии) [c.11]

    СУЩНОСТЬ МЕТОДА ЭМИССИОННОЙ ФОТОМЕТРИИ ПЛАМЕНИ [c.11]

    Метод эмиссионной фотометрии пламени является одним из вариантов эмиссионного спектрального анализа и основан на измерении интенсивности света, излучаемого возбужденными частицами (атомами или молекулами) при введении вещества в пламя горелки. [c.11]

    Возбуждение частиц в пламени, распределение Больцмана. Как показано в уравнении (3), интенсивность излучения атомов или молекул зависит от числа свободных атомов или молекул Мт- Так как методом эмиссионной фотометрии пламени определяют элементы в зоне пламени, где достигается равномерное распределение энергии по отдельным степеням свободы, т. е. имеет место локальное термическое равновесие (ЛТР), то количество атомов (молекул), находящихся в состоянии с энергией Е, может быть рассчитано в этом случае по формуле Больцмана  [c.13]

    Влияние раствора на результаты анализа. В методе эмиссионной фотометрии пламени, как и в любом методе спектрального анализа, состав пробы, а следовательно, и состав раствора влияет на результаты анализа. [c.13]

    Наблюдаемые в пламенах спектры атомов относительно просты, так как при таких температурах наблюдаются спектральные линии, обусловленные переходами только с уровней с низкими энергиями возбуждения (1,5—2,5 эВ). Поэтому в методе эмиссионной фотометрии пламени применяют очень простые приборы — пламенные фотометры, в которых монохроматором являются интерференционные светофильтры, а детектором излучения — фотоэлементы. Как правило, пламенные фотометры позволяют определять несколько элементов последовательно (натрий, калий, кальций, литий). Сконструированы также одноканальные многоэлементные фотометры с прямым отсчетом, позволяющие определять до И элементов, в том числе бор (по молекулярной полосе ВО2) и цезий (по резонансному дуплету). Более совершенны пламенные фотометры, имеющие компенсационную схему, которая устраняет спектральные помехи, связанные с инструментальной ошибкой (анализаторы типа ПАЖ). [c.14]

    Для определения неизвестной концентрации элементов в растворах методом эмиссионной фотометрии пламени необходимы эталоны, химический состав и физические свойства растворов которых должны быть как можно ближе к составу и свойствам анализируемых образцов. [c.15]

    В методе эмиссионной фотометрии пламени рекомендуется несколько способов определения неизвестной концентрации элемента в растворе. Независимо от выбранного способа предварительно устанавливают или проверяют линейность между током и концентрацией. [c.15]


    ОБЩИЕ УКАЗАНИЯ К ПРАКТИЧЕСКИМ РАБОТАМ ПО МЕТОДУ ЭМИССИОННОЙ ФОТОМЕТРИИ ПЛАМЕНИ [c.16]

    Одним из преимуществ метода эмиссионной фотометрии пламени является быстрое определение калия и натрия из одного раствора. Влияние одного элемента на результаты определения другого устанавливают эмпирически. Большое значение имеют концентрации определяемого и мешающего элементов, температура пламени, конструктив- [c.17]

    Для получения свободных атомов анализируемое вещество наг -вают до высокой температуры в пламенах. Способы введения вещества в пламена и происходящие при этом процессы описаны в Методах эмиссионной фотометрии пламени . Помимо пламен для атомизации веществ в атомно-абсорбционном методе используют специальные печи-кюветы, в которые вводят небольшое количество пробы (чаще всего в виде капли раствора). При повышении температуры печи вещество испаряется и атомизируется. Происходящие при этом процессы аналогичны процессам в пламенах. В качестве источников излучения, ослабление интенсивности которого определяется, могут быть использованы, например, лампы накаливания или различного рода газоразрядные лампы, испускающие непрерывные (сплошные) спектры в широких спектральных областях. [c.35]

    Частицы элементов, детектируемые в методе эмиссионной фотометрии пламени [c.122]

    Для определения алюминия эмиссионной фотометрией пламени могут быть использованы линии 394,4 и 396,15 нм и молекулярная полоса алюминия при 484 нм. Алюминий в водных растворах возбуждается с трудом, поэтому чувствительность таких прямых методов определения невысокая. [c.160]

    Метод эмиссионной фотометрии пламени основан на излучении энергии возбужденными атомами анализируемого вещества. Интенсивность испускания (эмиссии) излучения (ц пропорциональна концентрации определяемого элемента. [c.140]

    Полярографически определяли натрий в каучуках [462], природных и технических силикатах, содержащих железо [1240], воде, циркулирующей в промышленной установке [1263]. Сумму натрия и калия определяли в огнеупорных материалах [151], алюминатных растворах без предварительного отделения алюминия, нефелиновых концентратах, спеках и шламах [382]. Результаты согласуются с данными гравиметрического анализа и эмиссионной фотометрии пламени. Сумму натрия и калия определяли также в водах [445, 768, 1070—1072], сумму обменных натрия и калия определяли в почвах [3, 444, 445], стеклах [749]. [c.93]

    Результаты определения натрия и калия методами эмиссионной фотометрии пламени и абсорбционной фотометрии пламени показали, что при сухом способе вскрытия наблюдаются значительные потери калия и натрия. Поэтому рекомендован мокрый способ вскрытия. [c.155]

    Анализируемый раствор вводят в пламя горелки при этом первоначально атомы анализируемого вещества, поглощая энергию пламени, возбуждаются, т.е. некоторые электроны их переходят на более удаленные от ядра орбитали. Но затем, в результате обратного перехода электронов, энергия выделяется в виде излучения определенной длины волны. Получающиеся при этом спектры называют спектрами испускания или эмиссионными спектрами, откуда и название метода — эмиссионная фотометрия пламени. [c.372]

    Типичное устройство прибора для эмиссионной фотометрии пламени показано на рис. 5.6. Прибор сконструирован таким образом, что к горелке анализируемый раствор подводится в виде однородного тумана, состоящего только из очень мелких- капелек. В устройстве другого типа (так называемой комбинированной горелке-атомизаторе) струя водяной пыли целиком вводится непосредственно в пламя. [c.84]

Рис. 1. Схема устройства фотометра для эмиссионной фотометрии пламени Рис. 1. <a href="/info/329541">Схема устройства</a> фотометра для <a href="/info/5510">эмиссионной фотометрии</a> пламени
    Таким образом, в настоящее время собственно фотометрию пламени следует подразделить на две области эмиссионную и атомно-абсорбционную. Поскольку в названии метода эмиссионной фотометрии пламени дополнительно не уточняется, является ли метод атомно- или молекулярно-эмиссионным представляется целесообразным, в соответствии с предложениями, сделанными в литературе называть атомно-абсорбционный метод просто методом абсорбционной фотометрии пламени. [c.12]

Рис. 55. Схемы фотометров для эмиссионной фотометрии пламени. Рис. 55. <a href="/info/836032">Схемы фотометров</a> для <a href="/info/5510">эмиссионной фотометрии</a> пламени.

    Пламя в атомной абсорбционной спектроскопии является наиболее распространенным способом атомизации вещества. В атомно-абсорбционной спектроскопии пламя выполняет ту же роль, что и в пламенной эмиссионной спектроскопии, с той лишь разницей, что в последнем случае пламя является также и средством для возбуждения атомов. Поэтому естественно, что техника пламенной атомизации проб в атомно-абсорбционном спектральном анализе во многом копирует технику эмиссионной фотометрии пламени. [c.192]

    Чувствительность обнаружения элементов методами атомноабсорбционной и эмиссионной фотометрии пламени [c.236]

    Если причиной высокой абсолютной чувствительности является абсорбционная методика измерения концентрации атомов в плазме, то тогда и пламенный вариант ато.много абсорбционного метода должен столь же превосходить, например, эмиссионную фотометрию пламени. Однако, как показало сравнение ( 31), чувствительности обоих методов в среднем близки друг к другу. Следовательно, причиной высокой абсолютной чувствительности является не методика измерения концентрации, а способ получения поглощающего слоя. [c.312]

    Руководство включает два больших раздела оптические методы и электрохимические методы. В первом разделе рассматриваются методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентные методы. Второй раздел включает потенциометрический, кулонометрическнй, полярографический и амперометрический методы анализа. Единство подхода к теоретическим вопросам внутри каждого из разделов позволяет четко увидеть возможности, ограничения и недостатки каждого метода. По каждому методу даны практические работы, отражающие определенные возможности метода либо в исследовательском, либо в прикладном аспекте описана аппаратура. [c.2]

    Количественный учет влияния всех процессов в пламени — задача практически неразрешимая. Поэтому метод эмиссионной фотометрии пламени, так же как и все методы спектрального анализа, яйляетсд относительным. Для определения концентрации какого-либо металла необходимы эталоны, которые просто приготовить в виде растворов. [c.13]

    Метод эмиссионной фотометрии пламени прост, экспрессен, производителен, может быть легко автоматизирован воспроизводимость метода 2—4%. Для ряда элементов метод имеет очень низкие пределы обнаружения. Например, натрий можно определять при содержании его 10 мкг/мл. Определение микро- и субмикроколичеств ряда элементов возможно из очень небольших объемов например, с помощью фотометра РЬАРН0-4 из объема 0,3 мл можно одновременно определить два элемента. Предел обнаружения элементов этим мето- [c.14]

    Метод эмиссионной фотометрии пламени применен для определения натрия (и калия) в железохромовых катализаторах после отделения железа электролизом [1190]. Другие методы отделения железа, например осаждением пиридином гидроксида железа(1П), непригодны вследствие мешающего влияния на определение натрия. При определении 0,15—6,2% NajO погрешность не превышает 3%. [c.173]

    Пламя. Вариант АЭС с атомшацией в пламени называют методом эмиссионной фотометрии пламени. [c.228]

    Метод эмиссионной фотометрии пламени был применен для определения бария в смазочных маслах в смеси карбонатов и окислов, идущих на приготовление оксидных катодов э , 213 g уране2 2 8, в смеси щелочноземельных элементов после ионообменного разделения 38. Барий определялся в опытах по усвоению его растениями из почвы при определении обменной емкости почв 220, в рапе нефтяных промыслов 221 и в силикатных минералах222. в последнем случае навеску образца 1 г сплавляют с 6—10 г смеси карбонатов натрия и калия, сплав выщелачивают водой, осадок карбонатов промывают, растворяют в соляной кислоте и в раствор добавляют аммиак. Фильтрат упаривают, разбавляют до 100 мл и фотометрируют при 873 ммк по методу добавок, одновременно фотометрируя для учета фона пробу раствора, из которого барий был осажден серной кислотой. [c.251]

    Ацетиленовые и водородные пламена. Хорошо известно, что металлы, образующие термостойкие окислы, лучше всего определять в пламени, обогащенном топливом. Это утверждение справедливо как для эмиссионной фотометрии пламени, так и для атомно-абсорбционной спектрофотометрии. Из рис. IV. 8 видно, что степень поглощения кальция зависит от степени обогащения топливом и от положения пучка света относительно пламени [197]. При максимальном окислительном режиме соотношение газов было почти стехиометрическим и пламя имело чистый голубоватый цвет. В случае максимального восстановительного режима пламя давало яркое свечение и поглощало 3% излучения лампы с полым катодом, вероятно, вследствие рассеяния пучка света. Различные соотношения между содержанием топлива и воздуха в пламени получали, используя воздушный поток с расходом 20 л/мин и изменяя расход ацетилена в пределах 2,5—4,5 л. Постепенное снижение абсорбции с высотой связано с расширением факела пламени (оно изучалось Гибсоном, Гроссманом и Куком [65]). Абсорбционный контур пламени для аналитической линии меди 3247 А не претерпевал значительных изменений в указанном выше диапазоне расходов. Кривые поглощения кальция, напротив, имели острые пики. По мере увеличения отношения топливо— воздух максимум абсорбции оказывался в более высоких слоях пламени. Однако существепного изменения формы кривой не наблюдалось и величина максимальной абсорбции была в значительной степени независимой от соотношения топливо — воздух. [c.88]


Библиография для Эмиссионная фотометрия пламени: [c.183]    [c.383]   
Смотреть страницы где упоминается термин Эмиссионная фотометрия пламени: [c.28]    [c.174]    [c.115]    [c.233]   
Смотреть главы в:

Задачник по аналитической химии -> Эмиссионная фотометрия пламени


Аналитическая химия лития (1975) -- [ c.109 ]




ПОИСК





Смотрите так же термины и статьи:

Фотометрия

Фотометрия пламени

Фотометры

гом эмиссионный



© 2024 chem21.info Реклама на сайте