Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ошибка инструментальные

    Классификация погрешностей на систематические, случайные и грубые (промахи) с указанием некоторых причин их возникновения дана в разделе 1.5. Инструментальные ошибки в химическом анализе связаны с точностью взвешивания на аналитических весах и точностью измерения объемов мерной посудой. Методические ошибки обусловлены особенностями реакции, лежащей в основе метода, и неправильно составленной методикой анализа. В терминах теории информации случайные погрешности соответствуют шумам в канале передачи информации, систематические погрешности — помехам, а грубые — нарушениям канала связи.  [c.129]


    Систематические погрешности гирь могут быть оценены путем их сверки с эталонами более высокого класса точности. Сверка по эталону —наиболее надежный способ оценки систематических погрешностей измерительных приборов. Периодич ская поверка различных приборов (весов, спектрофотометров, фотоколориметров, рН-метров, ионометров, радиометров и т. п.) — необходимое условие успешной работы аналитических лабораторий. В ходе таких поверок аналитические приборы калибруют или градуируют по шкале интенсивности аналитического сигнала (оптическая плотность, интенсивность излучения, сила электрического тока и т. д.), используя с этой целью специальные стандартные образцы. Кроме того, во многих случаях градуируют и шкалу развертки интенсивного параметра, например шкалу длин волн или частот излучения в спектроскопических методах. Именно такого рода периодическая ловерка сводит к минимуму систематическую составляющую инструментальной ошибки. [c.39]

    По источникам происхождения погрешности (ошибки) химического анализа подразделяют на инструментальные, реактивные, методические, погрешности пробоотбора и т. п. Часто в названии содержатся еще более конкретные указания на природу (источник) ошибок —индикаторная ошибка, ошибка соосажде-ния, ошибка натекания, капельная ошибка. [c.23]

    Спектральные помехи, связанные с наложением постороннего излучения на спектральную линию или полосу определяемого элемента либо связанные с недостаточной монохроматичностью прибора (инструментальная ошибка). [c.13]

    Точность определения концентрации зависит от длины волны, на которой производится это определение. Выше, при рассмотрении инструментальных причин отклонения от закона Беера указывалось, что ошибка измерений оптической плотности минимальна в области максимума или минимума кривой поглощения. Дополнительное условие налагается в случае исследования растворов, содержащих два или больше веществ, так как точность, с которой могут быть найдены концентрации, также определяются выбором длин волн. Из уравнения (X. 120) следует, что относительная ошибка ДС1/С1 определения концентрации компонента I минимальна, если разность отношения молярных коэффициентов поглощения веществ I и И  [c.652]

    Наблюдаемые в пламенах спектры атомов относительно просты, так как при таких температурах наблюдаются спектральные линии, обусловленные переходами только с уровней с низкими энергиями возбуждения (1,5—2,5 эВ). Поэтому в методе эмиссионной фотометрии пламени применяют очень простые приборы — пламенные фотометры, в которых монохроматором являются интерференционные светофильтры, а детектором излучения — фотоэлементы. Как правило, пламенные фотометры позволяют определять несколько элементов последовательно (натрий, калий, кальций, литий). Сконструированы также одноканальные многоэлементные фотометры с прямым отсчетом, позволяющие определять до И элементов, в том числе бор (по молекулярной полосе ВО2) и цезий (по резонансному дуплету). Более совершенны пламенные фотометры, имеющие компенсационную схему, которая устраняет спектральные помехи, связанные с инструментальной ошибкой (анализаторы типа ПАЖ). [c.14]


    Далее свечение пламени с помощью линзы 6 превращается в слабо расходящийся пучок лучей, который проходит через абсорбционный светофильтр, выделяющий у определяемого элемента резонансную линию (натрий, калий, кальций) или молекулярную полосу (кальций). После пластинки 8 световой пучок попадает на интерференционный светофильтр 9. При этом часть излучения с узким интервалом длин волн, соответствующим полосе пропускания интерференционного светофильтра, проходит через светофильтр и попадает на фотоэлемент 11 основного канала, остальная часть излучения частично поглощается, частично отражается. Отраженный свет направляется в компенсационный канал с помощью пластинки 8, проходит через оптический клин 12 и попадает на фотоэлемент компенсационного канала 14. Фотоэлементы основного // и компенсационного 14 каналов включены навстречу друг другу, поэтому их электрические сигналы вычитаются. Таким образом, прибор регистрирует полезный сигнал, из которого исключен сигнал мешающего элемента (за счет последнего возникает инструментальная ошибка). Уменьшая или увеличивая прозрачность оптического (17 на рис. 13) клина, можно полностью сбалансировать постороннее излучение, прошедшее через интерференционный светофильтр. Это относится к собственному излучению пламени. Такую операцию выполняют на сухом пламени перед началом работы. Следовательно, оптическая схема фотометра ПАЖ-1 позволяет регистрировать аналитический сигнал определяемого элемента, исключить фоновое излучение пламени в этом спектральном интервале и скомпенсировать спектральные помехи, возникающие в присутствии посторонних элементов, если их спектральные линии или полосы не совпадают с шириной пропускания интерференционного светофильтра. [c.29]

    Чувствительность Ь инструментальных методов анализа определяется фактором пересчета показаний прибора (обычно в единицах шкалы) на содержание вещества в гравиметрии — это обратная величина стехиометрического гравиметрического фактора (Ь=1//). Чем меньше /, тем больше чувствительность метода и тем меньше абсолютная ошибка гравиметрического определения количества вещества х. В объемных методах анализа фактору f соответствует эквивалентная концентрация с применяемого титранта. Чтобы ошибка определения была невелика, а чувствительность метода высока, эта величина должна быть как можно меньшей, что способствует получению интенсивного сигнала у. Однако при этом начинает сказываться эффект разбавления, что приводит к систематическим ошибкам определения, поэтому следует выбирать оптимальную величину Сз. [c.457]

    Метод анализа можно представить в виде цепи передачи информации (см. рис. 1.1, б). В каждом случае источником информации является анализируемый образец — проба в начальном состоянии. Путем предварительных преобразований (растворение, подходящая обработка, включение операций разделения при неудовлетворительной избирательности) упрощают структуру информационного множества, после чего получают сигнал, используемый для аналитических целей. По каналу связи сигнал поступает в приемник (регистрирующее устройство), где он преобразуется в измеряемую величину, например электрическое напряжение. На выходе цепи передачи информации (рис. 1.1,6) получают характеристические сигналы г,, или сигналы / , интенсивность которых зависит от количества вещества. В большинстве инструментальных методов сигналы обоих видов можно получить одновременно. Полученный сигнал 2 незначительно отклоняется от первичного сигнала . Однако сигнал у, являющийся функцией количества вещества, подвержен более сильному воздействию помех.. Во-первых, его изменяет подчиненная некоторому статистическому распределению величина случайной ошибки сгц (шумы). Шумы ограничивают достоверность определяемой интенсивности сигнала одновременно они определяют наименьшее значение интенсивности г/и, которое еще можно обнаружить и измерить. Далее, сигнал у, исходящий из пробы, уширяется (например, интервал перехода индикатора), и его интенсивность уменьшается. В этом случае может измениться даже первоначальная закономерная связь интенсивности с концентрацией определяемого вещества. Наконец, при неудовлетворительной избирательности метода анализа возможно изменение интенсивности вследствие наложения соседних сигналов. [c.12]

    В заключение настоящего параграфа отметим, что классические методы химического анализа весовой и объемный остаются и в настоящее время наиболее точными по сравнению с инструментальными методами. При этом несомненно, что многие инструментальные методы более чувствительны и обеспечивают возможность оценки содержания компонента в области концентраций, недоступных для определения классическими методами. Таким образом, по-видимому, можно утверждать, что такие критерии эффективности химического анализа, как надежность результатов (правильность и воспроизводимость) и чувствительность, находятся в обратной зависимости чем ниже уровень содержания компонента в пробе и чувствительнее применяемый метод анализа, тем большие относительные ошибки сопутствуют количественному определению. [c.124]


    Конечное определение. В ходе конечного определения измеряется некое экстенсивное свойство аналитической системы (масса осадка, окислительно-восстановительная емкость, оптическая плотность, радиоактивность и т. д.), обычно пропорциональное числу атомов или ионов определяемого компонента. Погрешности этого этапа вызваны несовершенством измерительных систем (инструментальная ошибка) и обусловлены помехами, возникающими в процессе формирования, передачи и регистрации сигналов. [c.20]

    К систематическим погрешностям И типа относятся инструментальная, реактивная, методическая, эталонная и некоторые другие погрешности (ошибки). [c.38]

    Определение состава, строения цепи и молекулярной массы полимеров с помощью системы инструментальный метод — ЭВМ начали с 1968 г. и все шире применяют при исследовании различных полимеров [74]. Для анализа двухкомпонентных систем каучуков (НК и СКС) была применена ЭВМ для облегчения расчетов, связанных с выбором оптимальной комбинации характеристического и стандартного пиков на пирограммах [75]. Программа для всех сочетаний пиков отбирает сочетания, характеризующиеся меньшим значением квадратичной ошибки. Задача усложняется при переходе к многокомпонентным системам. [c.41]

    Погрешности измерений могут быть обусловлены ошибками приборов (инструментальные погрешности) и ошибками экспериментаторов (погрешности наблюдения или погрешности отсчетов показаний). [c.29]

    При проведении количественных измерений поглощения могут быть различные ошибки химические, инструментальные или личные, индивидуальные. [c.224]

    Отклонения от приведенных выше величин могут быть обусловлены физическими, химическими или инструментальными переменными. Отклонения вследствие инструментальной ошибки могут быть вызваны влиянием ширины щели, рассеянием света или полихроматическим излучением. Очевидные ошибки могут также появиться в результате изменения концентрации растворенных молекул вследствие ассоциации между молекулами растворенного вещества, между молекулами растворенного вещества и растворителя, а также вследствие диссоциации или ионизации. [c.39]

    Кривая 1 график зависимости Н = f(zr), построенный по теоретическим расчетным данным. Жирорастворимый желтый краситель (М = 225), толуол (0 = 77 см/с) Dm = 1.310-5 с.м /с силикагель G 8800 (dp =11 мкм) Rr = 0.8 В = 0.7. Данные расчитаны по уравнению (27). Кривая 2 идя построения графика использованы данные, подсчитанные аналогично, но с введением постоянной инструментальной ошибки дисперсию пятна. После введения такой поправки отмечается хорошее совпадение с экспериментально определяемыми точками. Никакими приемлемыми вариациями А , В ч С такое совпадение с результатами экспериментов не достигается. Точки - экспериментально подтвержденные значения. [c.115]

    Введение этой ошибки как поправки к отсчетам термопары необходимо для корректного измерения температуры. Случайная составляющая погрешности измерения температуры определяется погрешностью градуировки термопар, инструментальной ошибкой регистрирующего прибора и погрешностью оценок составляющих систематической ошибки. В камерах объемом (2,5—85) 10 м при температурах 600—1900 К случайная составляющая погрешности (9—30) К. [c.327]

    Инструментальные ошибки. Инструментальные ошибки обусловлены несовершенством приборов, с которыми работает аналитик, или влиянием на них внешних факторов. Например, объем мерной посуды (бюреток, пипеток и мерных колб) часто немного отличается от объема, установленного при ее калибровке, особенно если температура, при которой эта посуда используется, существенно отличается от температуры при калибровке. Систематиче- [c.59]

    Полагаем, что конечная точность J Q, и й не сказывается на величине ошибки. Определим предельную относительную ошибку, которая включает ошибк>- шкапы прибора, вызываемую погрешностью в определении Я и инструментальную часть систематической ошибки, возникающую из-за погрешности в определении А р и а [c.111]

    Оценим теперь инструментальную часгь систематической ошибки совместно с ошибкой шкалы прибора. Ошибка шкалы прибора опреде- [c.114]

    Для правильного использования литературных данных об инфракрасных спектрах поглощения, в частности приводимых в настоящей главе, существенно важно достаточно полное представление об относительной и абсолютной точности результатов и специфических инструментальных эффектах при измерениях интенсивности поглощения. В связи с этим ниже рассмотрены такие инструментальные эффекты при этом считаются известными основы техники и методы измерений инфракрасных спектров (см. руководства [6, 45, 88, 355], а также [3, 21, 117, 184, 329, 342, 444, 445, 461, 500, 518]). Нет необходимости специально рассматривать ошибки измерения частот. Достаточно отмстить, что в связи с обычной нрахиикой градуировки спектрометров но нормалям абсолютная точность и воспроизводимость измерений близки друг к другу, а данные различных работ согласуются в пределах их предполагаемой точности. Точность серийных приборов составляет обычно 0,5—0,1% точность приборов высокой разрешающей способности соответственно выше вплоть до полученной в последнее время (см. [424, 425, 427а]) абсолютной точности порядка 5 X 10 %. Обсуждение методов градуировки и точности серийных приборов и ссылки на соответствующую литературу имеются в обзоре А. Н. Александрова и В. А. Никитина [21. [c.493]

    Этот вид влияний такнсе может зависеть от посторонних элементов, снектр которых накладывается на линии определяемого элемента или создает сильный рассеянный свет, регистрируемый вместе с полезным сигналом. Такая помеха называется инструментальной ошибкой и в большой степени зависит от параметров прибора. [c.127]

    Кроме того, не учитывался также ряд факторов, существенно влияющих на точность измерений Л (см. стр. 30). Совершенно очевидно, что общая ошибка будет значительно больше, чем только одна инструментальная оишбка. [c.32]

    Расчет каждой из этих ошибок может быть сделан в отдельности [26]. Однако при расчете каждой из них на основании обработки экспериментальных данных методом математической статистики [28] должно быть сделано предположение о независимости одной из них от остальных или их постоянстве. Так, для расчета за1А по формуле (1.42) необходимо знать, как меняется За в зависимости от абсолютного значения А. Экспериментальная оценка одной из ошибок в определении коэффициента погашения sJa, стандартного отклонения 5 или ошибки 5 // может быть сделана лишь в предположении, что две другие не имеют в условиях эксперимента существенного значения. Некоторые попытки [24] — [29] оценить вклад отдельных факторов в общую ошибку спектрофотометрии показывают, что она в значительной степени зависит от надежности определения, например, параметров градуировочного графика аи Ь, а не только от инструментальной ошибки АЛ/Л. В формуле (1.42) в явном виде не отражается влияние таких факторов, как постоянство работы усилительного устройства, постоянство интенсивности излучения источника освещения, воспроизводимость балансировки шкалы отсчетного устройства. Таким образом, вопрос об ошибках в спектрофотометрии весьма сложен. [c.33]

    Это означает, что принцип релятивизации, или разностного измерения, позволяет исключить в криоскопии как систематическую погрешность градуировки, так и систематическую реактивную (примесную) ошибку. Принцип вычитания аналитического сигнала холостой пробы или фона используется во всех инструментальных методах. Такая коррекция фона исключительно важна при прямом анализе млогокомпонентных смесей (без предварительнога разделения), особенно при работе вблизи предела обнаружения, где сигналы фона и определяемого компонента соизмеримы. Коррекцию фона проводят либо непосредственно в ходе измерения сигнала анализируемого компонента, регистрируя интенсивность фонового сигнала рядом с основным, как это делается, например, в эмиссионном спектральном анализе. Так, при фотографической регистрации измеряют разность почернений  [c.40]

    Если 5 меняется приблизительно пропорционально числу измерений, то общепринятым параметром сравнения является коэффициент ва-риации, или относительное стандартное отклонение, равное хДистинное значение). Для иллюстрации в табл. 6.4 (а) представлена статистическая обработка результатов измерений полосы поглощения твердого вещества двумя операторами в двухмесячный период. Из этих результатов можно оценить вероятные ошибки измерения, в том числе и инструментальные, каждого из операторов и сравнить их (другой проверкой), чтобы увидеть, действительно ли имеется значительная разница. Повторяя измерения с растворенными образцами, можно добавить стадии взвешивания и растворения, как в табл. 6.4 (б). Аналогично обрабатываются другие аналитические измерения. Отсюда можно сделать заключения относительно погрешности каждой стадии анализа. [c.264]

    К второму типу можно отнести погрешности известной природы, значения которых могут быть оценены в ходе химического анализа или при постановке специального эксперимента. К ним относятся инструментальные, реактивные ошибки, ошибки отдельных стадий химического анализа — методические погрешности. Если исследователь может оцешггь ошибки отдельных стадий и операций, то, по закону сложения погрепшостей, он может вычислить общую погрешность результата анализа. В табл. 2.1 приведены расчеты абсолютных и относительных погрешностей некоторых фующий. [c.40]

    Навеску соли алюминия 0,2 г растворяют в воде в мерной колбе вместимостью 100 лш и разбавляют водой до метки. Через соответствующий интерференционный светофильтр фотометрируют серию эталонных водных растворов, содержащих 0,04—0,25 мг/100 мл натрия в порядке возрастания концентраций, и испытуемые растворы. Для уменьшения инструментальной ошибки повторяют фотометрирование в обратной последовательности начиная с высшей концентрации. Вьиисляют среднее арифметическое из этих показаний. При фотометрировании испытуемой пробы и эталонных растворов вводят поправку на фон пламени при распылении воды. По данным фотометрировании находят, между какими эталонами заключен испытуемый раствор. [c.129]

    Инструментальные методы. В последние годы инструментальные методы активационного анализа определения ультрамалых количеств марганца нашли чрезвычайно широкое применение. Их преимущество заключается в том, что облучение и измерение наведенной активности производится без разрушения исследуемых образцов. Вследствие этого они позволяют сократить время определения и устранить ошибки, вносимые при химической обработке проб [509]. Инструментальный метод основан на селективном измерении у-излучения от анализируемой пробы на у-спек-трометрах с NaJ (Т1)- или Се(Ь1)-детекторами с многоканальными анализаторами импульсов. Особенно большое развитие инструментальный метод получил с использованием Се(Ь1)-детектора с многоканальными анализаторами импульсов (512, 1024, 4096 каналами). Основное преимущество полупроводниковых детекторов — высокое разрешение фотопиков с близкой энергией. Разрешение для хорошего кристалла NaJ(Tl) размером 25 см X 3,5 см составляет 8—10% [84] в области y 1 Мэе и никогда не может быть меньше 6,6%. Разрешающая способность Се(Ь1)-детекторов составляет 1—3% [337]. Определение марганца этим методом в различных объектах приведено в табл. 16. На рис. 24 представлен у-спектр, полученный при инструментальном нейтроно-активационном определении примесей в H2SO4 [1026], а на рис. 25 — [c.98]

Рис. 39. Влияние диаметра частиц на зависимость высоты тарелки Н от расстояния, проходимого фронтом растворителя. Для построения графиков использованы экспериментальные данные, полученные Халпаапом и Рип-фаном [11. 12]. Красители. Отмечается искажение величины Н в нижней части графика (см. рис. 37) за счет инструментальной ошибки Сх. Совпадение с расчетными данными, показанными на рис. 38. весьма хорошее. Рис. 39. <a href="/info/328312">Влияние диаметра частиц</a> на <a href="/info/215230">зависимость высоты тарелки</a> Н от расстояния, проходимого <a href="/info/140115">фронтом растворителя</a>. Для <a href="/info/376716">построения графиков</a> использованы <a href="/info/304050">экспериментальные данные</a>, полученные Халпаапом и Рип-фаном [11. 12]. Красители. Отмечается искажение величины Н в <a href="/info/250522">нижней части</a> графика (см. рис. 37) за счет инструментальной ошибки Сх. Совпадение с <a href="/info/579302">расчетными данными</a>, показанными на рис. 38. весьма хорошее.
    Хотя увеличение инструментальной ошибки искажает график зависнмостн [c.117]


Смотреть страницы где упоминается термин Ошибка инструментальные: [c.583]    [c.154]    [c.110]    [c.115]    [c.274]    [c.27]    [c.48]    [c.19]    [c.215]    [c.38]    [c.39]    [c.42]    [c.19]    [c.22]    [c.21]   
Рефрактометрические методы химии (1960) -- [ c.191 ]

Рефрактометрические методы химии Издание 2 (1974) -- [ c.183 ]

Основы аналитической химии Издание 3 (1971) -- [ c.82 ]




ПОИСК





Смотрите так же термины и статьи:

ошибки



© 2025 chem21.info Реклама на сайте