Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эмиссионный атомный анализ пламенная фотометрия

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]


    Пламенная фотометрия — один из методов атомно-эмиссионного спектрального анализа. Этот метод состоит в том, что анализируемый образец переводят в раствор, который затем с помощью распылителя превращается в аэрозоль и подается в пламя горелки. Растворитель испаряется, а элементы, возбуждаясь, излучают спектр. Анализируемая спектральная линия выделяется с помощью прибора — монохроматора или светофильтра, а интенсивность ее свечения измеряется фотоэлементом. Пламя выгодно отличается от электрических источников света тем, что поступающие из баллона газ-топливо и газ-окислитель дают очень стабильное, равномерно горящее пламя. Из-за невысокой температуры в пламени возбуждаются элементы с низкими потенциалами возбуждения в первую очередь щелочные элементы, для определения которых практически нет экспрессных химических методов, а также щелочно-земельные и другие элементы. Всего этим методом определяют более 70 элементов. Использование индукционного высокочастотного разряда и дуговой плазменной горелки плазмотрона позволяет определять элементы с высоким потенциалом ионизации, а также элементы, образующие термостойкие оксиды, для возбуждения которых пламя малопригодно. [c.647]

    Метод пламенной фотометрии применяется (для открытия и определения химических элементов) в двух вариантах эмиссионная пламенная фотометрия (пламенно-эмиссионный анализ) и абсорбционная пламенная фотометрия (пламенно-абсорбционный, атомно-абсорбционный анализ). Чувствительность метода довольно высока — до 0,001 мкг в 1 мл анализируемого раствора. [c.520]

    Фотометрия пламени, пламенная фотометрия, спектрофото-метрия пламени, пламенно-эмиссионная спектроскопия, спектрометрия пламени — вариант спектрального атомно-эмиссионного анализа, основанный на непосредственном измерении интенсивности спектрального излучения жидкого или твердого анализируемого образца, вводимого в распыленном виде в бесцветное газовое пламя как источник возбуждения. Пламя обладает меньшей энергией возбуждения, чем дуга или искра, поэтому оно возбуждает интенсивную эмиссию только у элементов с низким потенциалом возбуждения (щелочные, щелочноземельные элементы, таллий). Если раствор вводят в пламя с постоянной скоростью, то интенсивность излучения зависит от концентрации определяемого элемента (градуировочный график). Фотометр регистрирует излучение только одной длины волны, он применяется для определения одного элемента. Для одновременного определения нескольких элементов служит спектрофотометрия пламени [13, 57]. [c.14]


Рис. 120. Чувствительность различных методов определения следов л) 1 — пламенная фотометрия 2 — абсорбционная спектрофото-метрия 3 — атомная абсорбция 4 — флуоресценция б) 1-масс-спектроскопия с искровым источником 2 — активационный анализ эмиссионный спектральный анализ 3 — метод медной искры 4 — метод графитовой искры 5 — метод дуги постоянного тока Рис. 120. Чувствительность <a href="/info/1610486">различных методов определения следов</a> л) 1 — <a href="/info/5508">пламенная фотометрия</a> 2 — абсорбционная <a href="/info/379252">спектрофото-метрия</a> 3 — <a href="/info/18477">атомная абсорбция</a> 4 — флуоресценция б) 1-<a href="/info/8104">масс-спектроскопия</a> с <a href="/info/141596">искровым источником</a> 2 — активационный <a href="/info/18530">анализ эмиссионный спектральный анализ</a> 3 — <a href="/info/170378">метод медной искры</a> 4 — <a href="/info/1072353">метод графитовой искры</a> 5 — <a href="/info/1072366">метод дуги постоянного</a> тока
    Пламя было первым источником света для эмиссионного спектрального анализа. Окрашивание пламени при введении пробы в течение ста лет служит для открытия ряда металлов. Но в целом пламя применяли мало, используя, главным образом, электрические источники света. Сравнительно недавно была разработана новая техника работы, которая позволила выявить ряд ценных характеристик пламени как источника света. В настоящее время методы спектрального анализа с использованием пламени широко распространены. Они получили специальное название — пламенная фотометрия. В атомно-абсорбционном анализе пламя используется для испарения вещества и диссоциации его молекул на атомы. [c.80]

    Атомный эмиссионный спектральный анализ особенно широко применяется для открытия и определения металлов в растворах или в твердых образцах. В фармацевтическом анализе он редко используется в обычном варианте (возбуждение в электрическом разряде). Чаще применяется пламенная фотометрия (возбуждение в пламени). [c.519]

    Можно видеть, что при прочих равных условиях эффективность данной методики повышается с увеличением предельно допустимого относительного содержания препарата в рабочей смеси и с уменьшением минимального объема этой смеси. Поэтому наиболее перспективны в данном случае методы анализа твердых тел из малых навесок вещества без разбавления или в смеси с небольшими количествами твердых ингредиентов (эмиссионный спектральный анализ, рентгеноспектральный микроанализ, искровая масс-спектрометрия). При достаточно высокой растворимости анализируемых препаратов перспективны также методы анализа растворов, позволяющие получать аналитический сигнал от растворов малого объема (спектрофотометрия, флуориметрия, эмиссионная и атомно-абсорбционная фотометрия пламени, вольтамперометрия). В частности, при использовании фотометрических методов [c.64]

    Пламенная фотометрия — раздел атомно-эмиссионного спектрального анализа. Основой метода является возбуждение в пламени спектра определяемого элемента и непосредственное измерение интенсивности свечения аналитической линии. [c.693]

    В результате экспериментальных исследований установлено, что наиболее чувствительные в поглощении линии часто не совпадают с наиболее интенсивными атомными линиями элементов в эмиссионном спектральном анализе, в том числе и в пламенной фотометрии. Объясняется это тем, что интенсивность излучения резонансных линий зависит не только от Л/ ,- и f, по к от участка спектра. Изменение интенсивности при температурах пламени или дугового разряда практически обусловлено экспоненциальным множителем, определяющим участок спектра, поэтому интенсивность излучения быстро падает в короткую область [c.514]

    Фотометрия пламени представляет собой один из видов спектрометрического атомно-эмиссионного спектрального анализа Высокая стабильность свечения этого источника позволяет при определенных условиях установить линейную связь непосредственно между отсчетом регистрирующего устройства и содержанием элемента в пробе, введенной в пламя. [c.413]

    К ним относятся эмиссионный спектральный анализ, фотометрические методы (колориметрия, спектрофотометрия, турбидиметрия, нефелометрия), эмиссионная пламенная фотометрия, атомно-абсорбционный и люминесцентный методы, рентгеноспектральный анализ, магнитная спектроскопия (ядерный магнитный резонанс и электронный парамагнитный резонанс). [c.325]

    Часто нужно определять не один микроэлемент, а сразу большое их число. Соответственно это поднимает роль методов много-элементного анализа. Из таких методов эмиссионный спектральный анализ применяется в 20 лабораториях, атомная абсорбция и пламенная фотометрия, которые к этой группе методов относятся с натяжкой, — в 19 лабораториях, активационный анализ — в 8, масс-спектрометрия — в 7 и рентгеновские методы — в 5 лабораториях. [c.97]


    Вопрос о преимуществах фотографической или фотоэлектрической регистрации при обнаружении очень слабых спектральных линий в случае анализа достаточно однородных материалов нельзя считать практически окончательно решенным. Теоретически преимущество должно принадлежать фотоэлектрическим приемникам, квантовый выход которых на порядок и более превосходит эквивалентный квантовый выход фотографических эмульсий. Соответствующие расчеты, выполненные в работах [748, 429], указывают, что с помощью фотоэлектрической регистрации, производящейся в оптимальных условиях, можно обнаруживать в 3—5 раз менее интенсивные спектральные линии, чем с помощью фотографической регистрации. Оптимальные условия для фотоэлектрической регистрации в некоторых методах- спектрального анализа (эмиссионный анализ растворов методом пламенной фотометрии, атомно-абсОрбционный анализ и др.) часто реализуются непосредственно (в первую очередь благодаря высокой стабильности аналитического сигнала во времени), либо легко могут быть созданы с помощью простых технических средств (например, модуляции сигнала). Именно поэтому фотоэлектрическая регистрация широко применяется в перечисленных методах анализа, обеспечивая не только удобство, экспрессность и высокую точность определений, но и возможность обнаружения очень малых содержаний искомых элементов. (Правда, нет сравнительных экспериментальных данных, из которых следовало бы, что применение в этих методах анализа фотографической регистрации не может обеспечить достижения таких же или меньших пределов обнаружения.) [c.67]

    Техника измерений при атомно-абсорбционном анализе почти не отличается от техники, применяемой при эмиссионной пламенной фотометрии. Монохроматор настраивают на нужную длину волны выбирают ширину щели устанавливают указанный изготовителем ток через источник света зажигают пламя и регулируют расход горючего газа и окислителя балансируют фотометр и измеряют эталонные растворы. Строят градуировочный график (соответственно закону Бера), который представляет собой зависимость оптической плотности от концентрации эталонов. График должен быть в основном прямолинейным. Затем в атомизатор подают пробы, и концентрацию элементов в них определяют по градуировочной кривой. [c.53]

    В результате экспериментальных исследований, проведенных в указанных выше работах, было установлено, что наиболее чувствительные в поглощении линии часто не совпадают с наиболее интенсивными атомными линиями элементов, применяемыми в качестве наиболее чувствительных в эмиссионном спектральном анализе, в том числе и в пламенной фотометрии. В ряде случаев данное обстоятельство было неправильно истолковано. [c.50]

    При атомно-абсорбционных измерениях в пламенах и в эмиссионной пламенной фотометрии наибольшее распространение получило понятие минимальной концентрации элемента в растворителе, т. е. по существу концентрации элемента в растворе. Применение относительной чувствительности по раствору в качестве основной характеристики пламенных методов совершенно есте-. ственно, поскольку в конечном итоге любые пробы перед анализом должны быть переведены в растворенное состояние. Предельные концентрации элементов в растворе, так же как и абсолютные чувствительности, относят к определению чистых элементов (точнее — чистых растворов соединений этих элементов) и выражают в весовых процентах по отношению к раствору (при малых концентрациях практически нет различия между чувствительностью по раствору и растворителю) или в весовых частях на миллион частей раствора ррт). [c.232]

    Разновидностью атомно-абсорбционного анализа является фотометрия пламени (пламенная фотометрия) — оптический метод количественного элементного анализа по атомным спектрам поглощения или испускания. Пламя может использоваться не только как атомизатор при измерениях сигнала атомной абсорбции (см. раздел 2.1), но и служить источником возбуждения эмиссионных спектров элементов. В последнем случае это термическая пламенная фотометрия — вариант эмиссионного спектрального анализа, который широко используется в аналитической практике при определении металлов [3, 8]. [c.245]

    Фотометрия пламени — один из видов эмиссионного спектрального анализа, в котором вместо фотографирования спектральных линий измеряют интенсивность излучения при помощи фотоэлементов и гальванометра. Этот метод позволяет определять ряд элементов с точностью 2—4% и чувствительностью 10 г. Анализируемый раствор вводится с помощью распылителя в пламя в виде аэрозоля. Атомно-абсорбционный метод анализа основан на измерении поглощения излучения от стандартного источника света атомами исследуемого элемента. [c.258]

    Свои особенности имеет анализ с применением пламен в качестве атомизатора и источника света. Анализ с пламенем развивался несколько обособленно от других методов и поэтому тоже выделился в самостоятельный раздел — пламенный атомно-эмиссионный спектральный анализ, или пламенная фотометрия. Этому разделу спектрального анализа посвящено много пособий и монографий. Заметим, однако, что при помощи пламен анализируется большое число самых различных материалов, поэтому методики пламенного анализа можно найти и в более общих разделах, посвященных анализу определенных материалов. [c.189]

    Другим важным приемом, которым пользуются в аналитической химии для перевода элементов в какое-либо определенное состояние, является разложение веществ в плазме высокотемпературного пламени в плазме вольтовой дуги или в плазме искрового разряда. В этом случае химические соединения при соответствующем подборе температуры плазмы почти полностью диссоциируют до свободных атомов. Используя оптические свойства элементов в атомарном состоянии, можно производить качественный и количественный анализ. На этом принципе основаны эмиссионный спектральный анализ (регистрируется интенсивность излучения в пределах той или иной спектральной линии) и атомная абсорбционная спектроскопия, включающая и пламенную фотометрию (определяется степень поглощения монохроматического излучения при прохождении луча через плазму). [c.7]

    Многие вопросы атомно-абсорбционного анализа продолжают оставаться нерешенными. Так, до настоящего времени не разработаны эффективные способы изменения величины абсорбционных сигналов. Если в эмиссионных методах пламенной фотометрии регистрируемый сигнал легко может быть увеличен или ослаблен изменением степени усиления измерительного прибора, то в атомно-абсорбционном анализе для этого все еще применяют разбавление растворов до меньшей концентрации (в отдельных работах — поворот удлиненной горелки). Следует заметить, что ослабление атомно-абсорбционного сигнала, техника которого разработана в молекулярном спектрофотометрическом анализе, необходимо лишь при измерении больших оптических плотностей. [c.185]

    Пламенная фотометрия позволяет быстро определять ряд элементов с точностью 2—4%, а в отдельных случаях и до 0,5%. Метод основан на измерении интенсивности излучения элементов в пламени определение проводят с помощью фотоэлементов и гальванометра. В определенном интервале наблюдается прямая зависимость интенсивности излучения элемента от его концентрации в анализируемом образце. В настоящее время метод продолжает развиваться, круг определяемых элементов непрерывно увеличивается. Получило развитие новое направление метода пламенной фотометрии — атомно-абсорбционный анализ. В отличие от эмиссионного метода в данном случае измеряется не излучение элемента в пламени, а поглощение излучения стандартного источника атомами исследуемого элемента. Атомно-абсорбционное определение как дополнение эмиссионного анализа позволяет в некоторых случаях повысить чувствительность определения, а в других — определить элементы, эмиссионным методом неопределяемые. [c.20]

    Метод спектрального анализа растворов и жидких проб непосредственным введением их в источник света использовали еще в начальный период применения эмиссионного спектрального анализа. С тех пор прошло более ста лет. Метод сохранился, был значительно усовершенствован и в настоящее время является основным в фотометрии пламени и в атомно-абсорбционном анализе. [c.29]

    Оптические, основанные на использовании оптических свойств исследуемых соединений визуальная колориметрия, фотоколориметрия, спектрофотометрия (абсорбционный спектральный анализ) турбодиметрия, нефелометрия эмиссионный спектральный анализ люминесцентный анализ пламенная фотометрия и атомно-абсорбционная спек- [c.213]

    Для анализа указанных веществ привлекли спектрофотометрию, эмиссионную фотометрию пламени, атомно-абсорбционную спектрофотометрию, эмиссионный спектральный анализ, нейтронно-активационный анализ, искровую масс-спектрометрию, ршверсионную вольт-амперометрию, потенциометрию, титриметрию, а также методы предварительного концентрирования (разделения) примесей при помощи экстракции, направленной кристаллизации, сорбции, соосаждения, ионного обмена, дистилляции и электрохимического восстановления. Данные об относительных содержаниях примесей в исследованных образцах сырья и монокристаллов представлены на рис. 1, 2. В последнем случае данные относятся к средним частям кристаллов большого размера, в которых макроскопическое распределение примесей было [c.13]

    УФ-спектрофогометрия ИК-спектрометрия Атомная абсорбция Пламенная фотометрия Эмиссионная спектрометрия Люминесцентный анализ Полярография [c.6]

    ФОТОМЕТРИЯ ПЛАМЕНИ (пламенная фотометрия), оптический метод количеств, элементного анализа по атомным спектрам поглощения (абсорбционная Ф. п.) или испускания (эмиссионная Ф. п.). Для получ. спектров анализируемое в-во переводят в атомный пар а пламени. Об абсорбционной Ф. п. см. Атомно-абсорбционный анализ. Эмиссионную Ф. п. делят на флуоресцентную (см. Атомнофлуоресцентный анализ) и термическую последний метод является разновидностью эмиссионного спектрального анализа и широко используется этому виду Ф. п. и посвящена данная статья. [c.631]

    При определении натрия в оксиде никеля в стандартные растворы вводят хлорид никеля (2 мг/мл), используют фильтровый фотометр фирмы К. Цейсс (модель III) и пламя ацетилен—воздух [1108]. Анализ титановых белид и оксида титана проводят после отделения титана отгонкой тетрафторида титана [516] или сорбцией сульфоса-лицилатного комплекса титана анионообменником [1111]. Оксиды цинка, железа, магния, никеля переводят в раствор с помощью НС] [62]. Натрий определяют атомно-эмиссионным методом в пламени ацетилен—воздух с помощью пламенно-фотометрической установки монохроматора УМ-2 с фотоумножителем ФЭУ-38. Основные параметры установки напряжение на ФЭУ 1200 В, расход ацетилена 2 л/мип, воздуха 8 л/мин. Эталонные растворы готовят в интервале концентраций натрия 5-10 —1 10 %. Изучено влияние НС1, К, Са, Fe и Мп на интенсивность резонансных линий натрия. Погрешность определения — г = 0,03 0,05 [79]. [c.170]

    При анализе ниобата бария—натрия—лития натрий определен методом атомно-эмиссионного анализа после отделения BaSOi [214]. Натрий определяют с помощью пламенного фотометра ФПФ-58 в пламени ацетилен—воздух после следующей подготовки пробы [35]. [c.170]

    На чем основан рефрактометрический анализ 2. Для чего применяется рефракто-метрический анализ 3. Как работает погружной рефрактометр 4. На чем основан поляриметрический анализ 5. Как работает круговой поляриметр СМ 6. На чем основан эмиссионный спектральный анализ 7. Как устроен кварцевый спектрограф ИСП-28 На чем основана пламенная фотометрия 9. Как устроен пламенный лабораторный фотометр ФПЛ-1 10. На чем основана атомно-абсорбционная спектрофотометрия 11. Каковы основные узлы атомно-абсорбционного спектрофотометра 12. Где применяют атомно-абсорбционную спектро-фотометрию  [c.253]

    Применение метода атомной абсорбции более эффективно при анализе природных вод, чем методы пламенной фотометрии, эмиссионной спектроскопии, комплексоиометрии и др. [916]. [c.152]

    В заключение настоящего раздела остановимся на сравнительной оценке чувствительности атомно-абсорбционного и атомно-флуоресцентного методов анализа. Как известно, атомная флуоресценция, как одно из самостоятельных направлений спектрального анализа, была изучена и использована Вайнфорднером с сотрудниками [65—67] ). По существу, это — эмиссионный метод, основанный, в отличие от обычной пламенной фотометрии, не на термическом, а на радиационном возбуждении излучения. [c.243]

    В 1955 г. работы А. Уолша [21] дали толчок развитию нового направления пламенной фотометрии — атомно-абсорбционпо-спек-трофотометрического метода анализа. В основе этого метода, как эмиссионного, лежит распыление анализируемого раствора в пламя в виде аэрозоля, по измерению подлежит не интенсивность излучения определяемого элемента, а степень поглощения атомами исследуемого элемента излучения стандартного источника света. Атомы в основном состоянии могут поглощать излучение, обладающее дискретными значениями энергии, поэтому для наблюдения атомной абсорбции достаточно перевести определяемый элемент в атомный пар. [c.206]

    При рассмотрении влияния органических растворителей в атомно-абсорбционной спектро копии, по существу, мы имеем дело с системой противоположной эмиссионной пламенной фотометрии, так как в последней мы измеряем количество возбужденных атомов, т. е. менее 1 % всех атомов, тогда как в атомно-абсорбционном анализе — количество атомов, находящихся в основном состоянии, практически равное общему их числу. Поэтому на первый взгляд может показаться, что факторы, вызывающие повышение чувствительности в эмиссионной пламенной фотометрии, будут отрицательно влиять в атомной абсорбции. Однако исследования показали, что введение органических растворителей оказывает положительный эффект и при атомно-абсорбционкых измерениях. Это указывает на то, что повышающее действие горючих веществ связано не только с изменением температуры пламени, но и со многими другими факторами. [c.63]

    Авторы ог.мечают, что прибор, если пользоваться в качестве источника возбуждения ла.мпой, излучающей монохроматический свет (например, газоразрядной натриевой лампой), может быть использован как абсорбционный пламенный фотометр, в котором абсорбционные вoй tвa пламени используются для оценки содержания элемента в распыляемом растворе. Главным в своей работе авторы считали применение атомной абсорбции, как средства для создания эмиссионного фильтрофотометра с высоки.м разрешением, тогда как атом-но-абсорбционный анализ ими рассматривается лишь как одно из возможных приложений предлагаемого ими фотометра. [c.103]


Смотреть страницы где упоминается термин Эмиссионный атомный анализ пламенная фотометрия: [c.6]    [c.709]    [c.294]    [c.622]    [c.172]    [c.332]    [c.168]    [c.164]    [c.163]    [c.197]   
Аналитическая химия азота _1977 (1977) -- [ c.126 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ атомно-эмиссионный

Анализ атомный

Анализ эмиссионный

Метод пламенного атомно- н молекулярно-эмиссионного анализа (фотометрия пламени)

Пламенная фотометрия

Пламенная фотометрия эмиссионная

Фотометрия

Фотометры

гом эмиссионный



© 2025 chem21.info Реклама на сайте