Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стадия световая

Рис. 39. Световая стадия фотосинтеза (схематическое изображение) Рис. 39. <a href="/info/6312">Световая стадия фотосинтеза</a> (схематическое изображение)

    В световой стадии хлорофилл, поглотив квант света, переходит в возбужден- [c.177]

    Под действием световой энергии и амфотерных ионов двойные связи акцептора поляризуются, что приводит к повышению реакционной способности я-электропов. Сложный амфотерный ион (XXVII) выделяет молекулу кислорода, которая действует так же, как амфотерный ион, и превращается сам в нормальный эозин (XXIV). Образование конечных продуктов фотосенсибилизированного окисления объясняется присоединением молекулы кислорода, действующей как амфотерный ион, положительно заряженным атомом к я-электронам двойной связи, в результате чего образуется новый амфотерный ион (XXVIII), который затем перестраивается в стабильную гидроперекись. Если в качестве акцептора использован а-пинен, то эти стадии реакции можно представить следующим образом  [c.359]

    Различают световую и темновую стадию фотосинтеза. Световая стадия включает фотофизические процессы и фотохимические реакции с участием хлорофилла. Фотосинтез начинается с первой пусковой стадии, когда молекулы хлорофилла поглощают квант света. При этом они возбуждаются до синглетного состояния (5) с временем жизни 10 с, которое подвергается конверсии в относительно стабильное бирадикальное (триплетное) состояние Т) с временем жизни порядка долей секунды  [c.284]

    Фотосинтез состоит из двух основных стадий. Первая из них, называемая световой стадией, связана с поглощением фотонов. Этот процесс осуществляется с огромной скоростью, возможно, за время 10 ... 10 с. Затем следует ряд химических превращений, которые в совокупности образуют темновую стадию. Этот процесс осуществляется в отсутствие света. Темновые реакции лимитируют весь процесс в целом. [c.162]

    Многие вопросы фотосинтеза, несмотря на бурное развитие науки, остаются мало изученными н до настоящего времени. Как уже упоминалось ранее, процесс фотосинтеза состоит из двух стадий — световой и темповой, причем обе эти стадии тесно связаны между собой. [c.177]

    Совершенно очевидно, что один из наиболее перспективных методов крупномасштабного преобразования солнечной энергии основан на использовании биосистем. Широкое применение биосистем для получения энергии способно обеспечить свыше 15 % производства энергии для экономически развитых стран. В последние 10—15 лет намечены новые пути биотрансформации солнечной энергии при фотосинтезе. Установлено, что некоторые микробиологические системы характеризуются высокой эффективностью фотосинтеза. Так, фоторазложение воды, осуществляемое суспензией хлореллы с образованием кислорода, в оптимальных условиях культивирования дает 130—140 л газа с 1 м освещаемой поверхности в сутки. Известно, что одна из особенностей процесса фотосинтеза — уменьшение эффективности преобразования солнечной энергии при высоких значениях интенсивности света. Новые технологии позволяют повысить эффективность фотосинтеза при высокой интенсивности света. Разрабатываются системы, эффективно поглощающие световой поток и обогащенные реакционными центрами по отношению к пигменту. Световые кривые фотосинтеза улучшаются также с увеличением скорости лимитирующей стадии электронного транспорта. Например, проведение процесса при повышенных температурах в системах термофильных микроорганизмов увеличивает эффективность преобразования солнечной энергии при высокой интенсивности света. [c.26]


    Согласно теории стадийного развития растение после завершения первой стадии развития (яровизации) должно пройти вторую стадию — световую. Основная роль при прохождении этой стадии принадлежит, наряду с другими факторами, условиям освещения. Для прохождения световой стадии соверщенно не требуется, чтобы свет действовал непосредственно на точку роста растений, важно лишь, чтобы в соответствующих условиях освещения находились листья, которые являются основными органами, воспринимающими действие света (М. X. Чайлахян). Следовательно, световую стадию могут пройти лишь растения, имеющие листья (хотя бы один лист). Обязательным условием, необходимым для прохождения световой стадии, является фотосинтез. [c.590]

    Стадии фотосинтеза. Процесс фотосинтеза состоит из двух последовательных и взаимосвязанных стадий световой, или энергетической, и темповой, или метаболической. [c.419]

    Из табл. VI.5 следует, что разработка светодиодов находится только в начальной стадии, тогда как выход порошковых люминофоров близок к пределу. Теоретическая величина энергетической эффективности предпробойной электролюминесценции составляет. I О—30, тогда как реально получено 3—5%. При инжекционном механизме возбуждения электрическая энергия может быть превраш ена в световую без потерь, и энергетическая эффективность электролюминесценции может достигать i00 96  [c.155]

    Технология процессов сульфоокисления. При водно-световом методе процесс ведут в одну стадию при 25—30 °С, непрерывно облучая реакционную массу ультрафиолетовым светом и экстрагируя серную кислоту и сульфокислоту водой. Реактор представ- [c.341]

    I. Стадия инициирования (начала) цепи заключается в зарождении свободных радикалов, которые образуются из молекул или других нейтральных частиц под воздействием некоторого импульса энергии теплового, электрического, светового и т. д, В зависимости от используемого источника энергии, различают следующие способы инициирования. [c.181]

    Во многих реакциях число фотохимически реагирующих молекул не равно числу поглощенных квантов, т. е. ф не равен единице. Объясняется это сложностью протекания фотохимического процесса, который может включать три стадии 1) начальный акт поглощения светового потока 2) первичный фотохимический процесс 3) вторичные реакции ( темновые ). [c.379]

    История изучения фотосинтеза начинается с 1881 г., когда Ю.Л. Мейер доказал, что фотосинтез протекает в структурах листьев растений - хлоро-пластах. В 20-х годах XX в. К.А. Тимирязев исследовал роль специальных структур - пигментов, называемых хлорофиллами, в поглощении солнечного света (особенно красного и синего) и использовании световой энергии в фотосинтезе. В 1937 г. Р. Хилл открыл фотолиз воды, или фотохимическое окисление воды и образование кислорода, а в 50-х годах М. Калвин с сотрудниками изучили так называемую темновую стадию, во время которой образуются органические вещества. Фотосинтез протекает в хлоропла-стах, которые содержат все необходимое для синтеза органических соединений фоточувствительные пигменты, переносчики электронов, ферменты, коферменты, различные органические соединения, используемые в ходе биосинтеза на темновой стадии. Световая стадия фотосинтеза показана на рис. 39 и может быть описана суммарным уравнением  [c.92]

    Первая стадия приводит к переходу молекулы (за время 10- с) в электронно-возбужденное состояние А+Кх А. Вторую стадию можно объединить с первой, назвав их вместе первичным фотохимическим процессом. Во второй стадии возбужденные молекулы за время своего существования (10- с) претерпевают различные превращения а) диссоциацию с образованием свободных атомов и радикалов (или ионов при гетеролитическом разрыве), которые вступают в дальнейшее взаимодействие — вторичные реакции (третья стадия) б) дезактивацию при столкновениях с другими молекулами в) переход в основное электронное состояние с испусканием кванта светового излучения (флуоресценция или фосфоресценция) или внутримолекулярное превращение (конверсия) энергии электронного возбуждения в колебания. Изучение спектров поглощения помогает решить вопрос о характере первичного фотохимического превращения. [c.379]

    Образование активных центров может идти за счет воздействия на систему извне в этом случае зарождение цепи называют инициированным. Инициирование под действием света называется фотохимическим. Например, световая вспышка (искра) вызывает взрыв смеси Нг + СЬ- Установлено, что на стадии зарождения цепи возникают атомы хлора -l-Av —> 2С1 , которые далее участвуют в реакции образования НС1. Инициирование может возникнуть в результате действия ионизирующих излучений. [c.775]

    Теперь мы обратимся к краткому рассмотрению того, как описанные фотохимические изменения превраш,аются в электрический импульс, который стимулирует мозг. Существуют доказательства, что одиночный квант света может вызвать раздражение палочки сетчатки. Однако поглощение одного кванта еще не создает эффекта зрения. Для этого требуется попадание нескольких квантов (согласно разумной оценке, от двух до шести квантов) в одну и ту же палочку в течение относительно короткого временного промежутка. Но даже в этом случае процесс весьма эффективен, а энергия конечной реакции существенно превосходит энергию, поглощенную зрительным пигментом. Поглощение света инициирует цепь реакций, черпающих энергию из метаболизма. Тем самым зрительное возбуждение является результатом усиления светового сигнала, попадающего в сетчатку. Фоторецептор служит биологическим эквивалентом фотоумножителя, который преобразует кванты света в электрический сигнал с большим усилением и низким шумом (см. гл. 7). И фоторецептор, и фотоумножитель достигают большого коэффициента усиления с помощью каскада стадий усиления. Зрительные пигменты представляют собой интегральные мембранные белки, которые находятся в плазме и мембранах дисков внешнего сегмента фоторецептора. Фотоизомеризация ретиналя вызывает серию конформационных изменений в связанном с ним белке и тем самым образует или раскрывает ферментативный активный центр. Следует каскад ферментативных реакций, которые в конце концов дают нервный импульс. Электрический ответ начинается с кратковременной гиперполяризации, вызванной закрытием нескольких сотен натриевых каналов в плазматической мембране. Таким способом молекулы-посредники (мессенджеры) передают информацию от диска рецептора к мембране плазмы. Вероятным кандидатом на роль мессенджера является богатый энергией циклический фосфат цГМФ (гуанозин-3, 5 -цикломонофосфат), возможно, в сочетании с ионами Са +. Было показано, что катионная проводимость плазматических мембран палочек и колбочек прямо контролируется цГМФ. Таким образом светоиндуцированные структурные изменения диска активируют механизм преобразования, который сам генерирует потенциал, распространяющийся по плазматической мембране. В настоящее время детали механизмов преобразования и усиления продолжают исследоваться. Была предложена схема, основной упор в которой делается на центральную роль фосфодиэстеразы в процессе контроля за кон- [c.241]


    Таким образом, в ходе темновой стадии фотосинтеза используется энергия, запасенная на световой стадии, и образуются различные органические соединения. [c.94]

    Экспериментально доказано, что характерное время конечной стадии сжатия кавитационного пузырька составляет величины порядка 10 -10 с. При этом скорость изменения стенки пузырька превышает 400 м/с, [1,2] а радиус изменяется от 500 до 100 мкм за один кадр скоростной киносъемки (10 с). Минимальный радиус пузырька составляет 5-10 мкм, но на основании экспериментов по рассеянию света [3], может быть сравним с длиной световой волны (-0,5 мкм). [c.43]

    Механизм Ф. состоит из двух стадий — световой и темновой. Световая стадия включает собственно фотохимич. реакции и сопряженные с ними энзиматические, к-рые завершают окисление воды и образуют восстановленный никотинамид-аденин-динуклеотид-фосфат (НАДФ-Нз) и аденозинтрифосфорную кислоту (АТФ). Далее во второй стадии процесса Ф. НАДФ-На и АТФ восстанавливают молекулу СО, в цикле сопряженных ферментативных реакций, к-рые могут идти и в темноте. [c.273]

    На первой стадии (световой) происходит преобразование энергии квантов света, поглощенной фотосинтетическими пигментами, в энергию химических связей АТФ (фотофосфорилирование) и восстановление НАДФ фотовосстановление)  [c.419]

    В ртутном электролизере на разных стадиях технологического процесса предусмотрена автоматическая сигнализация и блокировка. К аварийному положению приводит остановка ртутных асосов, анолитного насоса, хлорных компрессоров. Остановка их сопровождается автоматическим отключением постоянного тока. При отсутствии или неисправности блокировки постоянный ток, поступающий на ванны, отключается нажатием аварийной кнопки. При аварийном отключении преобразовательных агрегатов автоматически отключаются все двигатели хлорных и водородных компрессоров, а также двягатели газодувок водорода и др. Во всех случаях аварийных остановок срабатывает звуковая и световая сигнализация. [c.51]

    Рнеорг" неорганический фосфат). Первая реакция сама по себе не является самопроизвольной, так как она требует затраты свободной энергии в 226 кДж на моль глюкозы, однако необходимая свободная энергия поставляется второй реакцией, и в целом процесс является самопроизвольным с движущей силой 322 кДж. Темповые реакции небезразличны к источнику молекул НАДФ Н и АТФ, которые требуются для их протекания. Хотя в настоящее время их источником в зеленых растениях являются световые реакции, не исключено, что темповые реакции старше по возрасту и первоначально приводились в действие молекулами НАДФ Н и АТФ из других источников. Механизм темновых реакций известен под названием цикла Кальвина-Бенсона и в некотором смысле аналогичен циклу лимонной кислоты. Сначала диоксид углерода соединяется с молекулой-перенос-чиком, рибулозодифосфатом. После ряда стадий (некоторые из них вы- [c.335]

    Фотохимические реакции. К фотохимическим относятся реакции, идущие под действием светового излучения — видимого, ультрафиолетового, инфракрасного. В рассмотренной выше реакции синтеза хлороводорода фотохимической является стадия разложения молекул хлора [la свободные атомы дальше реакция идет по цеино.му механизму уже без участия светового излучения. Фотохимические реакции могут и пе сопровождаться цепным процессом, и таким образом каждому кванту действующего на B nie TBO света соответствует только о.тнн элементарный акт, а количество грореагировавщего вещества будет эквивалентно количеству дейст- [c.97]

    Ранние стадии механизма фотосинтеза включают так называемые световую и темновую реакции. При световой реакции кислород, высвобождаемый в процессе фотосинтеза, по-видимому первоначально принадлежал воде, расщепляемой акцептором (хлорофиллом), который активирован световой энергией (рис. 28.7). Затем водород восстанавливает фермент никотинамидаденинди-нуклеотид (НАД ), в результате чего образуются [c.490]

    На стадии инициирования реакции необходимо, чтобы в системе осуществилось получение (генерирование) свободных радикалов в результате теплового воздействия (термическое инициирование), светового (фотонницнирование), радиоактивного облучения (радиационное инициирование), химическими инициаторами (хн-м№1еское ра.цикальное инициирование) н др. [c.20]

    Стабилизация полимеров к фотохимической деструкции основана на введении в полимер соединений, которые легко поглощают световую энергию и трансформируют ее так, что она излучается ими квантами меньшей энергии, безопасными для полимера. Примером таких фотостабилизаторов являются бензофенон и его производные (ди-, триокси-бензофеноны, оксиметоксибензофеноны и др.). Трансформация световой энергии оксибензофеноном протекает через стадию образования хино-идной структуры по схеме [c.292]

    Фотохимические процессы могут вызывать химические изменения веществ. Природа получаемых продуктов, а также скорости их образования могут быть определены обычными химическими методами, рассматривать их здесь нет необходимости. Больший интерес представляют экспериментальные методы, связанные с использованием световых измерений. Определения интенсивностей поглощаемого (а иногда испускаемого) света существенны для нахождения квантовых выходов, которые в свою очередь необходимы для оценки эффективности первичных фотохимических процессов. Квантовые выходы могут быть определены с помощью классических методов, т. е. при освещении постоянным светом. Кинетическое поведение реакционных систем в условиях постоянного освещения обычно согласуется с предположением о наличии стационарных концентраций промежуточных соединений реакций. Дополнительные кинетические данные (например, константы скорости отдельных стадий) можно получить в экспериментах, проводимых в нестационарных условиях. Это уже было продемонстрировано на примерах фотолиза (см. конец разд. 1.8) и флуоресценции (см. разд. 4.3). Фотохимические процессы идеально подходят для изучения в нестационарных условиях потому, что освещение можно включить и выключить очень быстро с помощью импульсной лампы или механического затвора. Часто нельзя аналогичным образом начать и остановить термические реакции (хотя ударные волны могут использоваться для быстрого нагревания в газовых системах). Эта глава начинается с обсуждения источников света, применяемых в фотохими- [c.178]

    Ф. пространственно и во времени разделяется на два сравнительно обособленных процесса световую стацию окисления воды и темновую стадию восстановления СО2 (рис. 1). Обе эти стадии осзтоествляются у высших растений и водорослей в специализир. органеллах клетки - хлоропластах. Исключение - синезеленые водоросли (цианобактерии), у к-рых нет аппарата Ф., обособленного от цитоплазматич. мембран. [c.176]

    Хлоропласт, представляющий собой замкнутую структуру, отделенную от остальной части клетки оболочкой, заключает в себе весь фотосинтетич. аппарат. Световая стадия реализуется в мембранных структурах хлоропласта (т. наз. тилакои-дах), тогда как темповая стадия происходит в жвдком содержимом хлоропласта (строме) при участии водорастворимых ферментов. У фотосинтезирующих бактерий хлоропласты отсутствуют, но световая стадия также осуществляется в мембранных образованиях - в т. наз. хроматофорах. [c.176]

    Фотосистема I может действовать автономно без контакта с системой П. В этом случае циклич. перенос электрона (на схеме показан пунктиром) сопровождается синтезом АТФ, а не НАДФН. Образующиеся в световой стадии кофермент [c.177]

    В работах Ф. Блэкмана (1905), Р. Эмерсона и У. Арнолда (1932), а также Р. Хилла (1936-41) показано наличие световой и темновой стаций Ф. и экспериментально реализована световая стадия в отсутствие СО2 с использованием искусств, акцепторов электрона. Тем самым были получены подтверждения представлений об образовании О2 путем окисления воды. Окончательно это было доказано масс-спектрометрич. методом (С. Рубен, М. Камен, а также А.П. Виноградов и Р.В. Тейс, 1941). [c.179]

    Реакция водорода с хлором также включает фотохимическую стадию. В темноте при комнатной температуре смесь этих двух газов может оставаться непрореагировавгпей сколь угодрю долгое время, но, как только на нее попадает ультрафиолетовое излучение, происходит реакция взрывного характера. Из гл. 2 мы знаем, что энергия светового кванта связана с его частотой соотношением Е = hv. Хлор, представляющий собой газ желто-зеленого цвета, способен поглощать достаточное количество энергии ультрафиолетового излучения, чтобы возникла первая стадия цепной реакции [c.238]

    Реакция идет с энергией активации Е = 28,5 кДж при интенсивности светового потока 10 л- - и со скоростью ш = 9,5-10- мoль-л- - Скорость зарождения цепи, измеренная методом ингибиторов, Шо = 9-10- моль-л- -с- Реакция окисления дибензилового эфира при инициировании йзо-изо-бутиронитрилом имеет энергию активации Е = 93,6 кДж. энергия активации распада азо-ызо-бутиронитрила 128,9 кДж. Рассчитайте длину цепи и энергию активации каждой стадии. [c.422]

    Итог световой стадии - накопление энергии в виде НАДФН и АТФ, которая затем используется для биосинтеза углеводов и других органических соединений на темновой стадии. [c.94]


Смотреть страницы где упоминается термин Стадия световая: [c.103]    [c.269]    [c.74]    [c.47]    [c.89]    [c.340]    [c.192]    [c.1965]    [c.176]    [c.178]    [c.139]    [c.128]   
Курс физиологии растений Издание 3 (1971) -- [ c.590 , c.593 ]




ПОИСК





Смотрите так же термины и статьи:

Световая стадия фотосинтеза

Световые стадии фотосинтеза. Фотосинтетическое фосфорилирование



© 2024 chem21.info Реклама на сайте