Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроны, система переноса

    П. Митчелл высказал предположение, что система переноса электронов и протонов и переносящая протоны АТФаза возникли независимо друг от друга и, вероятно, неодновременно как разные способы генерации Арн+, необходимого для обеспечения энергией процесса избирательного транспорта питательных веществ в клетку. Последующая встреча обеих систем в клетке положила начало сопряжению процессов транспорта электронов и фосфорилирования в результате обращения работы АТФазы. Это сделало возможным запасание свободной энергии окисления в молекулах АТФ. Близкий состав и аналогичная структура энергопреобразующих мембран, большое сходство механизмов сопряжения у разных групп прокариот и эукариот указывают на то, что возникшая на раннем этапе эволюции система сопряжения электронного транспорта и фосфорилирования была использована всеми организмами без принципиальных изменений. [c.348]


    В клетки животных и бактерий активно транопортируются аминокислоты [38, 39]. У Е. oli существуют специфические системы переноса почти для каждой аминокислоты, а для некоторых аминокислот таких систем даже несколько. Обычно наряду с системой, для которой характерны высокое сродство к аминокислоте и способность перекачивать ее из областей с очень низкой концентрацией, существуют параллельно функционирующие системы с рецепторами, не обладающими столь высоким сродством к субстрату. Системы транспорта аминокислот, а также сахаров достаточно хорошо исследованы у бактерий [38, 45, 46]. В одной из таких систем, детально изученной с помощью химических и генетических методов, процесс проникновения различных сахаров (в том числе альдогексоз) внутрь клетки сопряжен с распадом фосфоенолпирувата (табл. 3-5). Судя по всему, сахара при функционировании этой системы проходят через внутреннюю мембрану в виде фосфатных эфиров (групповая транслокация) [46а, 46Ь]. В другой системе транспорт аминокислот и лактозы сопряжен с системой переноса электронов (гл. 10) в связанной с мембраной окислительно-восстановительной цепи. Считают, что эта система не зависит от синтеза АТР. [c.359]

    Хотя очень интересно установить, происходит ли в таких реакциях одновременный переход двух электронов, имеющийся в настоящее время кинетический материал не позволяет это сделать. (Одно время считали, что изменение валентного состояния происходит легко только в том случае, если перенос приводит к изменению валентного состояния только на одну единицу. Благодаря вероятности того, что большинство таких изменений происходит путем переноса атомов, это ограничение оказывается ненужным. В водных системах перенос атома О эквивалентен передаче двух зарядов, в то время как перенос радикала ОН или атома Н соответствует передаче единичного заряда. С этой точки зрения вода может служить очень хорошей средой для переноса заряда.) [c.509]

    Перенос энергии, происходящий между молекулами на расстоянии, значительно превышающем их диаметры столкновения. Скорость переноса по этому механизму не должна лимитироваться диффузией и поэтому не должна зависеть от вязкости даже при переходе от жидких растворов к твердым. Для этого механизма тушение возбужденной молекулы D молекулой А не связано с диффузией или непосредственной встречей молекул за время жизни возбужденного состояния.. Электронные системы молекул D и А можно рассматривать как механические осцилляторы, которые способны колебаться с общей частотой v. Колеблющиеся электрические заряды молекул D и А будут взаимодействовать друг с другом как два диполя. Когда молекула А оказывается вблизи молекулы D, имеется определенная вероятность того, что прежде чем испустить фотон, молекула D передаст свою энергию возбуждения акцептору А. Константа скорости переноса энергии описывается уравнением [c.86]


    Слабые химические взаимодействия соответствуют изменениям энергии в 300—400 раз меньшим возникновение новых связей при этом часто не сопровождается разрывом прежних, а лишь некоторым ослаблением их. Поэтому такие взаимодействия способствуют образованию большего числа связей и в целом повышению уровня структурирования системы — объединению ее фрагментов в единое целое. Слабые химические взаимодействия в сложных молекулах более специфичны, чем сильные, в том смысле, что за счет их энергии не всегда можно преодолеть барьеры, обусловленные особенностями геометрии молекулы, и поэтому геометрические факторы приобретают существенное значение в качестве критериев выбора пути реакции. Слабые химические взаимодействия могут быть обусловлены перераспределением электронной плотности, переносом заряда и особенно часто — водородными связями. [c.241]

    При объяснении резонансного механизма безызлучательного переноса энергии используют два подхода. При классическом подходе электронные системы молекул О и А рассматривают как осцилляторы, спо- [c.134]

    Три поколения крыс получали корм, лишенный токоферола, но содержавший при этом Ы,Ы -дифенил-п-фениленди-амин оказалось, что присутствие Ы,Ы -дифенил-п-фениленди-амина устраняет далеко не все болезненные симптомы. Следовательно, вполне возможно, что токоферолы играют и более специфическую роль, вероятно, на уровне клеточных мембран. Сводится ли она к защите каких-то компонентов системы переноса электронов или они связаны с непосредственным участием в окислительно-восстановительных процессах, пока что неизвестно. [c.388]

    Насчет каких-либо других функций витамина К в организме человека, ничего неизвестно. Нафтохиноновое кольцо мох т служить оки ителем, в, системе переноса электронов [c.390]

    Для металлоорганических соединений, построенных из центрального атома металла и органических лигандов с я-электронной системой, характерны два типа электронных переходов, обусловленных переносом заряда н природой растворителя. В зависимости от относительной электронодонорной и электроноакцепторной способности металла и лиганда переход может быть связан с переносом заряда от металла к лиганду или от лиганда к металлу. Характерный для обоих переходов с переносом заряда сильный сольватохромный эффект был детально изучен на примере комплексов металлов 6 группы с различными органическими лигандами (главным образом ди- [c.418]

    Если же перенос электрона сопровождается существенной перестройкой электронной системы молекулы (или атомной перестройкой, например, с разрывом связей), что требует определенной энергии активации, то такой перенос будет необратимым, и он уже включает в себя энергетические и энтропийные характеристики синхронно протекающей химической стадии. [c.31]

    Система цитохромов представляет собой ферментативную цепь переноса электронов на молекулярный кислород. Она состоит из цитохромов С1, с и а. Система переноса электронов бактерий имеет другой набор цитохромов П1, 02, 1, 4, С2, Сз, С4. [c.559]

    Как показано на рис. 2.3, сопряжение в енонах (как и в диенах) снижает разность энергий между ВЗМО и НСМО п-электронной системы (стр. 16), в результате чего положение полосы поглощения смещается в длинноволновую область. Соответствующие электронные переходы называют переходами с переносом заряда , подчеркивая тем самым их зависимость от резонанса 1Г-электронной системы хромофора. [c.22]

    Пластохинон выполняет в системе переноса электронов несколько специфических функций (рис. 10.13). Его значительно больше, чем других компонентов цепи, и он служит электронным буфером , который обеспечивает гладкое функционирование цепи даже при сильных колебаниях в распределении квантов света между двумя фотосистемами. Он способен также связывать между собой несколько электронтранспортных цепей и таким образом повышать надежность системы. Например, если какой-либо реакционный центр II не функционирует, то пластохинон может обеспечить работу связанного с ним реакционного центра I за счет электронов, поступающих из другого реакционного центра II. В результате реакционный центр I не будет испытывать недостатка в электронах. Другая возможная роль пластохинона упоминалась ранее (разд. 10.4.1), когда рассматривалось распределение фотосистем в тилакоидах. Из-за пространственного разделения разных фотосистем необходим механизм, обеспечивающий поток электронов между ними, и предполагают, что в этом механизме главную роль играет пластохинон. [c.346]

    Растворимые системы переноса электронов на О2 у первичных анаэробов [c.350]

    Вся система переноса электронов от субстрата на О2 через длинную цепь переносчиков представлялась бы нерационально громоздкой, если бы единственной целью процесса было соединение электронов с молекулярным кислородом. Другое назначение этого механизма состоит в запасании освобождающейся в процессе электронного переноса энергии путем трансформирования ее в химическую энергию фосфатных связей. [c.365]


    Как показали Арнон и др. [79f], дополнительное количество АТР может синтезироваться в хлоропластах в результате циклического фо-тофосфорилирования электроны, находящиеся на вершине фотосистемы I, возвращаются в цикл, замыкаемый указанной на рис. 13-18 штриховой стрелкой. Для синтеза АТР используется система переноса электронов, которая либо связана с цепью переноса Z-схемы, либо является независимой. Фактически Арнон и др. считали, что в хлоропластах имеются три фотосистемы фотосистема I участвует в циклическом фотофосфорилированип, а фотосистема II состоит из двух частей, являющихся компонентами Z-схемы [80]. [c.39]

    Специально поставленные исследования показали, что реализующийся в адсорбционной системе перенос электрона имеет место и в основном состоянии, и таким образом связан с адсорбционным специфическим взаимодействием. [c.172]

    Хемосорбция всегда приводит к переносу заряда от адсорбата к поверхности катализатора. Такой перенос может быть полным, когда адсорбат либо отдает, либо принимает на себя электроны поверхности твердого тела и происходит полное обобществление электронной системы адсорбата, в данном случае субстрата, и твердого тела — катализатора. Возможны случаи, когда не происходит ионизации адсорбата, а молекула удерживается в адсорбированном состоянии в виде диполей, индуцированных за счет поляризации, наведенной поверхностными зарядами твердого тела. [c.15]

    Перенос электрона между радикалом и диамагнитной частицей также может происходить с такой скоростью, которая вызывает уширение спектральных линий. Одной из первых была исследована система, в которой происходил обмен электроном между нафталином и его анион-радикалом. Если растворителем служил ТГФ, константа скорости второго порядка переноса электрона составляет 610 л/мольс [25а]. Эта величина в сто раз меньше, чем для процесса, контролируемого диффузией. Полагают, что снижение скорости обусловлено тем, что наряду с переносом электрона происходит перенос положительного нротивоио-на ионной пары анион-радикала. [c.49]

    Аналогично были исследованы комплексные соединения двухвалентной меди с бис-8-гидроксихинолином, 3-фенил-р-аланином и диэтилдитиокарбаминовой кислотой. Спектрофотометрическим методом изучалось воздействие высокого давления до 12 ГПа на эти соединения Найдено смещение полос электронных спектров погло щения, что свидетельствует о переходе электрона с переносом заряда типа Си+-(-лиганд. Определены характеры переходов с переносом заряда, и на основании этого сделана оценка процент1Юго содержания Си+ в системе. Было доказано, что процесс восстановления Си-+- Си -обратим при снижении давления до атмосферного. [c.167]

    Наряду с зависимой от липоевой кислоты пируватдегидрогеназой, клетки Е. соН содержат пируватоксидазу — растворимый флавопротеид, который действует совместно с мембраносвязанной системой переноса электронов, превращая пируват в ацетат и Oj. Механизм этого про-десса пока неясен [1386]. [c.272]

    Благодаря присутствию во внешней среде СОг оказался возможным фотосинтез. Бактериальный фотосинтез, а затем и фотосинтез зеленых растений развивались примерно 3—2 10 лет назад. Фотосинтез состоит в поглощении света и преобразовании его энергии в химическую энергию биологических молекул. Для этого потребовались поглощающие свет соединения, в частности, содержащие порфириновые циклы — хлорофилл и цитохромы. В результате поглощения квантов света в хлорофилле электроны системы переходят на более высокие уровни энергии. Далее работает цепь переноса электронов, главными участниками которой являются окислительно-восстановительные ферменты — цитохромы. Запасенная первоначально в хлорофилле энергия выделяется в биологически полезной форме — в АТФ и НАДФ. Происходит фотофосфорилирование. [c.53]

    Каковы же функции этих интересных хинонов и хромаяолов По имеющимся на сегодня представлениям, убихиноны являются компонентами цепи переноса электронов, растворимыми в липидах митохондриальных мембран. Подразумевается, что пластохиноны выполняют аналогичную функцию в системах переноса электронов, находящихся в мембранах хлоропластов. С другой стороны, функции витаминов Е и К пока определенно не известны. Имеются данные, что в некоторых микобактериях витамин К входит в цепь переноса электронов и функционирует точно так же, как убихиноны у млекопитающих. Некоторые бактерии содержат как менахиноны, так и убихиноны. Однако у высших организмов единственная известная в настоящее время функции витамина К связана с синтезом белков, необходимых для свертывания крови (дополнение 10-Г). [c.385]

    Другая особенность внутренней митохондриальной мембраны — это наличие при определенных условиях выростов на ее внутренней поверхности (обращенной в сторону митохондриального матрикса). Фер-иаидес-Моран, открывший эти частицы в 1962 г., предположил, что в< яих могут содержаться ферменты системы переноса электронов. ОднакО последующие йсследоваиия показал и,< чтб дто не так. Как оказалось, в< частицах е мод. 85 ООО, прикрепленных к [c.392]

    Литотрофные организмы, как правило, отличаются медленным ростом, и изучение их метаболизма сопряжено со значительными трудностями [109]. Тем не менее из того, что уже известно, вполне очевидно, что в большинстве случаев эти бактерии обладают цепью переноса электронов, во многих отношениях сходной с соответствующей митохондриальной системой. Перенос электронов по этой цепи приводит к образованию АТР. Количество синтезируемого АТР зависит от числа участков сопряжения, которое в свою очередь зависит от электродных потенциалов используемых реакций. Так, Нг при его окислении под действием Ог обеспечивает перенос электронов через все три участка сопряжения с синтезом трех молекул АТР. С другой стороны, окисление под действием Ог нитрита, для которого Е° (pH 7) = 4-0,42 В, приводит к синтезу АТР только на участке III. При окислении нитрита не только выход АТР оказывается меньше, чем при окислении Нг, но возникает еще и другая проблема. В то время как восстановленные пиридиннуклеотиды легко генерируются за счет Нг, нитрит является недостаточно сильным восстановителем, чтобы восстановить NAD+ в NADH. Единственным путем, по которому в клетках, использующих эту реакцию, могут вырабатываться восстановители, является обращение потока электронов, приводимое в движение гидролизом АТР. Обращенный поток электронов — процесс, характерный для многих хе-молитотрофных организмов. [c.425]

    Ферментативное действие химотрипсина, как и других панкреатических протеаз (трипсина, эластазы), соответствует механизму общего кислотноосновного катализа, в котором принимают участие в качестве системы переноса заряда остатки аминокислот №5 , Авр и 8ег . Передача электронной плотности от заряженной при pH 8 отрицательно карбоксильной группы аспарагиновой кислоты через имидазольное кольцо гистидина к кислороду боковой цепи серина обусловливает повышение его иуклеофиль-ности настолько, что может осуществляться нуклеофильное воздействие на карбонильный углеродный атом пептидной связи. На промежуточно образующемся О-ацильном производном серина перенос заряда, обрывается, ио на последующей стадии деацилирования снова немедленно восстанавливается. Гидролитическое расщепление пептидной связи может быть рассмотрено как перенос ацила, при котором осуществляется перемещение ациль-иого остатка с аминогруппы на молекулу воды (рис. 3-31). [c.408]

    Как отмечалось во введении к этому разделу, два одноэлектронных переноса также приводят к образованию дианиопа. Так,, при реакции циклооктатетраена с калием в ТГФ образуется дианион (31), у которого выигрыш в энергии вследствие образования ароматической Юл-электронной системы превышает угловое напряжение, возникающее при образовании плоского цикла [65]. Дианион (32), образующийся из бутадиена-1,3, может быть описан формулой с локализованными зарядами (33). Такой анион,. [c.34]

    Наибольшее внимание уделялось положению полосы поглощения, отвечающей переходу с перенос(Ш заряда в частности, изучение электронных спектров множества модельных соединений позволило установить правнла (табл. 2.2) для расчета Л макс енонов и полиенонов. Опять-таки они справедливы только в случае хорошего перекрывания орбиталей 1Г-электронной системы хромофора, а для напряженных или пространственно затрудненных систем, в которых перекрывание 1Г-орбиталей невозможно, эти правила неприемлемы. [c.24]

    Пространственные факторы оказывают большое влияние на спектры поглощения ароматических соединений в очень редких случаях два формально сопряженных хромофорных звена проявляют лишь оэбственные максимумы поглощения. Например, для дифенила 2.21 характерна сравнительно интенсивная полоса поглощения, обусловленная переходом с переносом заряда, которая маскирует нормальную полосу поглощения п-электронной системы бензола с А - 254 нм ( - 204), соответствующую переходу с локальным возбуждением. Однако замещение в орто-положениях, как, например, в соединении 2.22, затрудняет сопряжение между двумя кольцевыми системами, и спектр становится аналогичньш спектру соответ ствующего моноциклического производного бензола. [c.33]

    Механизм реакций десатурации еще не выяснен, однако эксперименты со стереоспецифически меченой при С-2 или С-5 МВК свидетельствуют о том, что введение каждой двойной связи происходит путем гран -элиминирования водорода (рис. 2.17). Были представлены доказательства, согласно которым необходимыми кофакторами этого процесса в пластидах высших растений служат NADP+ и FAD. У бактерий предполагают участие в нем системы переноса электронов. [c.67]

    Перенос электронов. Возможно, наиболее существенную роль играют изопренилированные молекулы убихинона и менахинона, которые являются дыхательными коферментами в системах переноса электронов у животных, растений и микроорганизмов, а также близкий к ним по строению хинон — пластохинон фотосинтетических систем переноса электронов в хлоропластах (гл. 10). Важным свойством в данном случае является легкость и обратимость восстановления хинонов через семи-хиноновый радикал до гидрохинонов. [c.119]

    Появление Оз открыло новые возможности для совершенствования системы получения живой клеткой энергии из химических соединений. Формируется способ получения энергии, основанный на глубоком окислении неорганических и органических соединений окружающей среды. (Органические соединения — теперь. соединения, имеющие биогенное происхождение.) Этот способ связан с созданием новой системы электронного транспорта, в принципе сходной, но не идентичной фотосинтетической системе переноса электронов, и сопряженного с ней механизма фосфорилирования —окислительного фосфорилирования. Последний, по современным представлениям, аналогичен механизму фотофосфорилирования. В группах эубактерий обнаружено огромное разнообразие типов жизни, у которых основным источником энергии служит окислительное фосфорилирование. Различия заключаются в природе доноров и акцепторов электронов. Таким образом, все современные способы получения энергии живыми организмами сформировались на уровне прокариотной клеточной организации и их становление может быть прослежено в эубактериальной ветви. В процессе дальнейшей эволюции развитие получили только наиболее совершенные варианты. [c.438]

    Более сильными и дальнодействующими являются специфические взаимодействия. К их числу относится водородная связь, возникающая между молекулами, содержащими подвижные атомы водорода, и сильноэлектроотрицательными атомами других молекул. Энергия такой связи составляет 20-40 кДж/моль, что достаточно для образования молекулярных ассоциатов и димерных молекул. Весьма сильные специфические взаимодействия могут возникать между молекулами с я-электронной системой (донор электрона) и молекулами, имеющими большое сродство к электрону (акцептор электрона). Результатом может быть образование комплексов с переносом зарядов. Имеются данные, что прочные комплексы могут также образовываться за счет взаимодействия неспаренного электрона свободных радикалов с делокализованными 7с-электронами конденсированных ароматических фрагментов молекул. Такие взаимодействия характерны для процессов образования ассоциатов из асфальтенов и смол. [c.752]

    Атомы Вг (42 1/2) с высоким выходом образуются при фотодиссоциации молекул Вг2 под действием излучения в зелено-голубом участке видимого диапазона спектра, так что условия для более или менее эффективного электронно-колебательного переноса энергии могут быть созданы при фотолизе смесей брома с подходящими молекулами с помощью достаточно интенсивной импульсной лампы. Среди активных сред, генерационные свойства которых изучены в условиях накачки при импульсном ламповом фотолизе [87—89, 91], система Вгг+СОг —одна из самых удачных. Это объясняется малым дефектом резонанса в процессе Br(42Pi/2 )-f 02(0000)- Br(42P3/J+ 02(100l)—30 см">, достаточно большой его скоростью ( -3,7-10 с -Па ) и эффективностью (около 40% столкновений в единицу времени приводят [c.184]


Смотреть страницы где упоминается термин Электроны, система переноса: [c.96]    [c.264]    [c.304]    [c.307]    [c.85]    [c.110]    [c.204]    [c.442]    [c.488]    [c.28]    [c.242]    [c.83]    [c.201]   
Метаболические пути (1973) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Митохондриальная цепь переноса электронов — основная система синтеза АТР в организме

Перенос электронной энергии в конденсированных системах

Перенос электронов в ферментных и клеточных системах

Перенос электронов электронный система

Растворимые системы переноса электронов на

электронная система



© 2024 chem21.info Реклама на сайте