Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смеситель циркуляционный

Рис. 8.7. Экспериментальная кривая отклика циркуляционного контура смесителя периодического действия на импульсное возмущение Рис. 8.7. <a href="/info/330316">Экспериментальная кривая отклика</a> <a href="/info/786979">циркуляционного контура</a> <a href="/info/223170">смесителя периодического действия</a> на импульсное возмущение

Рис. 12. Смеситель циркуляционного типа Рис. 12. Смеситель циркуляционного типа
Рис. Х1Х-11. Смеситель циркуляцион ного типа Рис. Х1Х-11. Смеситель циркуляцион ного типа
    Сухое мыло может быть получено на установку готовым или приготовлено непосредственно в процессе производства смазки, В последнем случае омыляемое сырье и водный раствор щелочи (суспензия) в необходимых количествах смешиваются в попеременно действующих реакторах, снабженных высокооборотным перемешивающим устройством и рубашкой для подачи теплоносителя. После завершения реакции омыления или нейтрализации (для жирных кислот) водная пульпа мыла поступает на сушку в вакуумный барабанный аппарат непрерывного действия. Сухое мыло эрлифтом подается в бункер, а затем уже весами 5 дозируется в один из двух параллельно установленных реакторов 1, куда предварительно дозировочным насосом 2 закачивается примерно 2/3 необходимого количества нефтяного масла. После тщательного перемешивания смесь насосом 2 прокачивается через электрический трубчатый нагреватель 8, где нагревается до 200— 210 °С и далее смешивается с остатком масла и масляным раствором присадок в смесителе 9. Затем смесь поступает в деаэратор 10, в циркуляционном контуре которого установлен гомогенизирующий клапан 6. В деаэраторе из мыльно-масляного расплава удаляется воздух, после чего расплав направляется для охлаждения в скребковый холодильник 12. Охлажденная смазка поступает в сборник-накопитель 16, а некондиционный продукт через сборник-накопитель 15 направляется на переработку или откачивается с установки, [c.103]

    Центробежные лопастные смесители относятся к циркуляционным смесителям с быстро враш,аюш,имся рабочим органом. Экспериментально установлено, что при враш,ении лопастной мешалки с окружной скоростью края лопасти более 6 м/с перемешиваемый сыпучий материал может быть переведен чисто механически в псевдо-ожиженное состояние. При этом значительно увеличиваются подвижность сыпучего материала и скорость его движения по циркуляционному контуру, благодаря чему время смешивания не превышает [c.235]


    Составим математическую модель процесса смешивания в циркуляционных смесителях, позволяющую рассчитывать 4м при любой структурной схеме потоков смешиваемого материала внутри смесителя. С этой целью сделаем следующие допущения процесс смешивания заканчивается в периоде / (см. рис. 8.1), когда преобладает механизм смешивания частиц компонентов их конвективным переносом по рабочему объему смесителя физико-механические свойства смеси ие оказывают существенного влияния на процесс смешивания (ранее отмечено, для для периода / это предположение подтверждено экспериментально) значение предельного коэффициента неоднородности смеси Ven незначительно отличается от значения коэффициента неоднородности смеси 1/ , достигаемого смесью к концу периода / процесса смешивания это позволяет принять с некоторой погрешностью i,t i i M- [c.239]

    По механике переноса веш,ества смесители периодического- действия можно разделить на циркуляционные смесители смесители объемного смешивания смесители диффузионного смешивания. К циркуляционным смесителям относятся наиболее распространенные смесители порошкообразных и мелкозернистых сыпучих материалов. Для этих смесителей характерно движение (циркуляция) основного потока смешиваемого материала по замкнутому контуру. Соединение отдельных зон рабочего объема смесителя потоком материала в циркуляционный контур может быть последовательным, параллельным илп сложным (с рециркуляцией, разветвлением, байпасом н т. д.). Движение материала через зоны обеспечивают либо перемешивающий орган, либо специальные транспортеры. Зона действия перемешивающего органа составляет незначительную долю общего рабочего объема смесителя. [c.233]

    При этих допущениях в качестве рабочей модели процесса смешивания в циркуляционных смесителях можно принять ячеечную модель. Разнос частиц отдельных компонентов по ячейкам опишем [c.239]

    Смеситель циркуляционного типа состоит из емкости с перфорированной трубой и центробежного насоса. Его используют при компаундировании товарных нефтепродуктов, при добавлении присадок. [c.35]

    Смешение материалов осуществляется за счет создания в смесителе циркуляционного движения отдельных объемов по перекрещивающимся траекториям. Постепенное усреднение состава сталкивающихся в смесителе объемов материалов требует больших затрат времени для достижения хорошего качества смешения. [c.211]

    Разобьем весь циркуляционный контур смесителя на ряд характерных зон, соединенных между собой потоком материала. Каждую зону смесителя заменим соответствующим числом ячеек (аппаратов) идеального смешения, соединенных в цепочку последовательно. Цепочка ячеек идеального смешения должна быть адекватна зоне по воздействию на поток частиц. Таким образом весь циркуляционный контур мы заменим некоторой системой цепочек из ячеек идеального смешения с той или иной топологией их соединения. [c.240]

    Цикл в периодической технологической схеме можно сократить за счет совместной подачи реагентов дозировочными насосами (при этом перед реактором устанавливают смеситель), а также снижения времени обезвоживания при подводе дополнительного тепла через теплообменник, который включается в циркуляционную систему реактора. Периодический процесс универсален, позволяет производить на данной установке любые мыльные и углеводородные смазки. Последние получают при работе только первой секции установки после обезвоживания твердых углеводородов (парафина, це- [c.101]

    Поиск оптимального варианта циркуляционного смесителя периодического действия с использованием математической модели [c.243]

    Рассмотрим возможность оптимизации циркуляционных смесителей с использованием метода математического моделирования. Как известно, оптимизация какой-либо системы включает следующие этапы выбор функции цели (или критерия оптимизации) составление содержательного описания процесса или явления, происходящего в системе разработка математической модели процесса или явления и установление ограничений на параметры составление алгоритма поиска оптимального варианта системы и режима ее работы. [c.238]

    Интенсивность И процесса смешивания при известных начальной и конечной однородности смеси, задаваемых регламентом на состав и качество смеси, определяется только значением 4м- Время см можно уменьшить увеличением скорости циркуляции материала внутри смесителя или объема активной зоны смесителя, соответствующей организацией потока материала в циркуляционном контуре. Каждый из этих способов связан в той или иной степени с увеличением энергозатрат и стоимости изготовления смесителя. Таким образом, параметры И, ц> и С оказываются взаимосвязанными через см- [c.239]

    По схеме устанавливают характерные зоны циркуляционного контура смесителя и способ их соединения в контуре. [c.243]


    Технологическая схема этого производства представлена на рис. У-4, а. В смеситель I подаются этилен (ноток д ), вода (поток д,) и циркуляционный газ (поток 9з). Полученная в смесителе I газоводяная смесь (поток q нагревается в теплообменнике II за счет тепла реакционной смеси (ноток 177) И1 [c.219]

    Обезвоживание масла при пониженном давлении осуществляют в вакуумной колонне, снабженной паровой рубашкой. Подачу масла в колонну можно вести двумя способами — через распределитель в виде перфорированных трубок, расположенных над поверхностью масла, с которой в этом случае испаряется влага, или при помощи механических распылителей, подающих масло в зону пониженного давления в виде тумана, что способствует испарению влаги. На практике почти исключительно применяют первый способ ввиду его простоты и надежности. Кроме вакуумной колонны в установку для обезвоживания масла входят два резервуара для приема обводненного масла и его подогрева, циркуляционные насосы для подачи масла в колонну и для откачки его из колонны, дисковый смеситель для диспергирования капель влаги и более равномерного их распределения в масле, аппаратура для подогрева масла и контроля его обводненности. [c.131]

    Смесители циркуляционного типа. Широкое распространение получили смесители циркуляционного типа, состоящие из емкости 1 и центробежного насоса 3, который забирает жидкость из нижних слоев и подает ее на свободную поверхность через разбрызгиватель 2, осуществляя замкнутую циркуляцию (рис. ХУ11-11,а). Для усиления турбулизирующего эффекта в емкость иногда помещают решетку или перфорированный трубопровод, что обеспечивает более равномерное распределение жидкости по сечению емкости. [c.455]

    Мешалки, планетарные мешалки, волчковые смесители, циркуляционные контуры (с насосами или эжекторами потока жидкости), трубопроводы со встроенными элементами, создающими турбулентность, смесители 150 (пат. США 3195865) для пастообразных смесей пригодны пластосмесители, червячные смесители Френкеля, дис-сольверы, пропеллерные мешалки, планетарные смесители, турбинные и быстроходные смесители, краскотерки, стержневые мельницы, фрикционные и шаровые мельницы [c.256]

    К наиболее распространенным в отечественной промышлеппостн циркуляционным смесителям следует отнести планетарио-ии скорый и центробежный лопастной. [c.233]

    Оптимизация циркуляционных емееителей. При выборе оптимальных конструктивных размеров смесителя и его режима работы используют в основном метод физического моделирования. Число вариантов исполнения лабораторной модели объемом 5—6 л обычно небольшое от 2 до 5. Режимные и конструктивные параметры лабораторных смесителей из-за трудоемкости и высокой стоимости их изготовления и проведения экспериментов, как правило, изменяют в узких диапазонах. В моделях смесителей малого объема влияние пристеночных эффектов на гидродинамику потока частиц внутри смесителя велико. В промышленных смесителях эти эффекты в значительной мере ослаблены. Это усложняет поиск масштабных переходов от лабораторной модели к промышленному образцу смесителя. По этим причинам метод физического моделирования смесителей сыпучих материалов при разработке методики их оптимизации неэффективен. [c.238]

    Даны физическая модель и математическое описание процесса нанесения слоя вспомогательного вещества на цилиндрическую поверхность фильтровального патрона с учетом геометрических характеристик фильтра, свойств вспомогательного вещества, скорости процесса концентрации суспензии [388]. Приняты следующие допущения нанесение слоя происходит в замкнутой циркуляционной системе фильтр — смеситель вспомогательное вещество несжимаемо в системе осуществляется идеальное перемешивание основной слой наносится на имеющийся топкий слой вспомогательного вещества. При анализе введено понятие вероятности проникания частиц с жидкой фазой через ранее нанесенный слой вспомогательного вещества единичной толщины. Получены уравнения, позволяющие определить продолжительность иансссиия слоя вспомогательного вещества при постоянпглх производительности насоса или разности давлений с разбиением области интегрирования на равные участки. [c.361]


Смотреть страницы где упоминается термин Смеситель циркуляционный: [c.232]    [c.232]    [c.232]    [c.367]    [c.267]    [c.216]    [c.105]    [c.36]    [c.297]    [c.233]    [c.155]    [c.255]   
Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности Издание 2 (1982) -- [ c.394 ]

Машиностроение энциклопедия Раздел IV Расчет и конструирование машин ТомIV-12 Машины и аппараты химических и нефтехимических производств (2004) -- [ c.132 ]




ПОИСК







© 2025 chem21.info Реклама на сайте