Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлориды металлов термодинамические свойства

    В зависимости от химического состава, кристаллического строения, толщины окисной пленки и т. п. металл находится в активном или в пассивном состоянии. Термодинамические свойства активного металла характеризуются стандартным электродным потенциалом. Металл в пассивном Состоянии характеризуется наличием пленки, изолирующей его от воздействия Среды потенциал металла в этом случае облагораживается, сдвигается в сторону положительных значений коррозионная стойкость повышается. Ниже сравниваются значения потенциалов некоторых металлов в разбавленном (0,5 н.) растворе хлорида натрия [2, с. 181] со стандартными электродными потенциалами этих металлов в активном состоянии  [c.16]


    В шестой том Химической термодинамики в цветной металлургии включен справочный материал по термодинамическим свойствам селена и селенидов, теллура и теллуридов. Наряду с окислами и хлоридами селена и теллура рассмотрены селениды и теллуриды 14 металлов (Си, Ай, 2п, Сс1, Н0, Са, 1п, Т1, Ое, 5п, РЬ, Ав, 5Ь и В ), представляющих значительный интерес в полупроводниковой технике. [c.308]

    Газовая хроматография дает возможность количественно определять летучие хлориды металлов (например, германия или мыщьяка 30]) или исследовать их термодинамические свойства [31]. Для изучения коррозионно-активных летучих галогенпроизводных необходима специальная аппаратура. [c.330]

    Термодинамические свойства некоторых растворов электролитов. V. Изменения избыточного изобарно-изотермического потенциала при смешении водных растворов хлоридов щелочных металлов. С т а х а н о в а М. С. Сб. Физическая химия растворов . М., Наука , 1972, стр. 82—85. [c.299]

    По его мнению, лучшими катализаторами могут быть металлы с наименьшей разницей свободной энергии образования оксидов и хлоридов (рис. 10). Позднее Дж. Аллен рассмотрел термодинамику отдельных стадий превращения меди в процессе оксихлорирования [76]. Однако, если выводы на основании термодинамических расчетов о невозможности получения значительного каталитического эффекта от какого-либо из рассматриваемых металлов можно считать окончательным, то положительный эффект должен быть проверен экспериментально. Как видно из рис. 10, соединения магния с точки зрения термодинамики обладают лучшим комплексом свойств, чем соединения меди, тем не менее в процессах Дикона и оксихлорирования, как известно, особой активности они не проявляют. Расчеты могут оказаться полезными при рассмотрении влияния промоторов и составлении многокомпонентных систем. Например, они хорошо объясняют активирующую роль редкоземельных элементов на катализаторы с хлоридами меди. [c.70]

    Термодинамические свойства и константы хлоридов хрома были впервые всесторонне исследованы и рассчитаны в работе [8]. Взаимодействие элементарного хрома с хлором в интервале 400— 1000 К, как показали термодинамические расчеты, приводит преимущественно к образованию СгСЦ. Наименее вероятна вторичная реакция взаимодействия СгСЦ с Сг с образованием СгС1г [9]. Аналогичные термодинамические расчеты [10, 11] процесса хлорирования феррохрома показали, что изобарные потенциалы реакций хрома и железа с хлором имеют большие отрицательные значения наиболее вероятно образование хлоридов трехвалентных металлов. Хлорирование феррохрома сопровождается сильным выделением тепла, причем тепловой эффект реакций мало изменяется с температурой. Повышение температуры вызывает уменьшение константы равновесия, но ее значение достаточно велико даже при высокой температуре. В случае недостатка хлора возможны прямые реакции образования дихлоридов хрома и железа, а также становится вероятной реакция  [c.351]


    Линейная зависимость энтропии для хлоридов металлов как функция их мольной массы была установлена Дроссбахом [102]. Вероятно, эта зависимость будет достоверна и для ряда других соединений. Поэтому для прогноза термодинамических свойств фосфидов использована зависимость [c.77]

    Много работ, основой которых служит экспериментальный материал по химическому равновесию. Теми или иными методами (тензиметрическим, методом э. д. с., методом равновесия с окислительно-восстановительными смесями) изучены процессы восстановления водородом — окислов [7067— 70911, сульфидов [7092—71011, галогенидов [7102—71061, карбидов [Л 07—7113] и кислородсодержащих солей [7114—7123, 7126, 7127] углеродом — окислов [7128—7143] и других веществ [7144—7151] окисью углерода — окислов [7152—7166], сульфидов [7166—7169] и кислородсодержащих солей [7170 — 7180]. К ним надо присоединить системы, содержащие различные окислы, как простые [7181—71851,7187—72631, так и смешанные (твердые растворы) [7264—72931, сульфиды — индивидуальные [7294—7345] и бинарные [7346—7350], а также селе-ниды [6457, 7351—7362] и теллуриды [7363—7374]. Работы [7375—7391] и [7392—7447] относятся соответственно к гало-генидам и их смесям. В число последних входят и работы [7424—74471, посвященные масс-спектрографическому исследованию термодинамических свойств бинарных систем, образованных фторидами металлов. В них разработана методика определения состава и давления пара в этих системах. Были изучены также системы, содержащие карбиды [7448—7467], силициды [7468—7475], нитриды [7476—7483], фосфиды [7484—7491], арсениды [7492— 7499], стибниды [7500—7508], гибриды [7509—7511], соединения металлов с различными элементами [5182, 7510—7517] и друг с другом [7518—7548]. Кристаллогидратам посвящены работы [7549—7570], термической диссоциации различных веществ [7571—7601]. В [7602—7632] изучены процессы взаимодействия с различными веществами, в [7633—7652] реакции окислов с разнообразными соединениями, в [7653—7660] реакции с кислородом, в [7661—7676] с сульфидами, в [7677—7680] с хлоридами. Работы [7681—7690] освещают реакции диспропорцио- ироваиия, а [7691—77181 водосодержащие системы. [c.60]

    Полную информацию о свойствах растворов расплавленных солей м но получить, анализируя зависимость величин АСГ, А5Р и АЯ1 от концентрации компонентов. По величине и знаку этих функций для одного компонента растворы расплавленных солей можно разделить на несколько типов [9, 20]. Такое разделение, однако, будет иметь лишь ограниченное значение, пока не будет выяснена зависимость между термодинамическими свойствами систем расплавленных солей и концентрацией их компонентов. В монографии Алабышева [4 ] обсуждается влияние свойств компонентов на термодинамические характеристики ряда растворов расплавленных солей, содержащих один и тот же анион и различные катионы, в частности растворов расплавов РЬС1 а в хлоридах щелочных и щелочно-земельных металлов. Установлено, что с увеличением радиуса катиона в ряду Ы —+ Ыа —> термодинамические свойства этих [c.66]

    Применяя pa чeTvПo термодинамическим характеристикам соединений и учитывая их свойства, можно, хотя и приближенно, решить, как нужно ставить опыт, чтобы из смеси окислов или из природных руд получить хлорированием тот или иной хлорид. Например, проведя термодинамический расчет, можно предсказать, что при хлорировании природной двуокиси титана будут хлорироваться в первую очередь примешанные к ней окислы металлов второй группы периодической системы элементов, а также окислы железа. Сравнивая же давления паров получаемых хлоридов, можно сделать вывод, что хлориды металлов второй группы останутся в реакционном пространстве, а хлорид железа отгонится и сконденсируется на более холодных частях прибе ра. Во втирую оче )ель будет хлорироваться сам окисел титана и лишь в последнюю—труднохлорируемые окислы, например окись кремния. При этом надо учитывать, что хлорид титана является по отношению к окислам хорошим хлорирующим агентом и что возможно установление равновесия реакции между хлоридом титана и такими окислами, как окиси алюминия, кремния и др. Зная это, подбирают такие условия реакции, чтобы возникающее равновесие сдвинулось в сторону образования хлорида титана. [c.179]

    Стандартные характеристики растворенного вещества согласно общепринятому выбору стандартного состояния относятся к гипотетическому одномоляльному раствору, обладающему свойствами бесконечно разбавленного, т. е. к нулевой ионной силе, а химический эксперимент проводится при конечных концентрациях реагентов. Изучение равновесий, как правило, проводится в растворах с постоянным и довольно высоким значением ионной силы, причем полученные значения констант равновесия и тепловых эффектов далеко не всегда пересчитываются на нулевую ионную силу. Термодинамические характеристики реакций комплексообразования при конечных значениях ионной силы оказываются несопоставимыми с основными стандартными характеристиками ионов, фигурирующими в справочной литературе, что закрывает путь для многих расчетов и сопоставлений. Термодинамические характеристики для растворов с конечным значением ионной силы часто оказываются несопо-ставимыми и между собой, так как каждый исследователь выбирает значение ионной силы раствора и электролит для ее поддержания в значительной степени произвольно, используя чаще всего нитраты или перхлораты, а иногда хлориды щелочных металлов. [c.260]


    Взаимодействие пептидных групп с ионами щелочных и щелочноземельных металлов, по-видимому, имеет в значительной степени ионный характер, но получены доказательства того, что это взаимодействие сохраняется и в растворе. Химические сдвиги протонов в спектрах ядерного магнитного резонанса (ЯМР) указывают на то, что взаимодействие металл — амидный кислород аналогично тому, которое описано для структур, существующих в растворах М-метилацетамида и ионов А1 +, ТЬ , Мд + и Ы+ в таком же порядке уменьшаются длины связей металл—лиганд [46, 47]. Не будучи специфическим свойством отдельных связей, взаимодействия металл — карбоксильный кислород и металл — пептидный кислород доказываются также тем фактом, что растворимость аминокислот и пептидов в воде изменяется в присутствии галогенидов щелочных и щелочноземельных металлов [48]. Например, [Са(Н01у-01у-01у) (Н20)2]С12-Н20 (XV)—это только один из ряда стехиометрических комплексов, которые образуют с аминокислотами и пептидами хлориды, бромиды и иодиды Са(П), 5г(П) и Ва(П). Для всех выделенных комплексов найдено, что растворимость пептида в растворе соли больше, чем в чистой воде [48]. Дополнительным доказательством взаимодействия кальция с пептидом в растворе служит наблюдение обратного факта — растворимость иодата кальция в воде возрастает в присутствии глицилглицина и некоторых других пептидов и аминокислот [49]. Увеличение растворимости иодатов щелочноземельных металлов было использовано для определения констант устойчивости комплексов металлов с пептидами в растворе [50]. И термодинамическая, и кинетическая устойчивость этих комплексов невелика. [c.164]


Смотреть страницы где упоминается термин Хлориды металлов термодинамические свойства: [c.891]    [c.298]    [c.76]    [c.219]    [c.219]   
Справочник по производству хлора каустической соды и основных хлорпродуктов (1976) -- [ c.3 , c.9 , c.320 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы свойства

Стаханова, Г. И. Микулип, М. X. Карапетъянц, К. К. Власенко, Баалова. Термодинамические свойства смешанных растворов электролитов IV. Изменения энтальпии при смешении водных растворов хлоридов щелочных металлов

Стаханова. Термодинамические свойства смешанных растворов электролитов. V. Изменения избыточного изобарно-изотермического потенциала при смещении водных растворов хлоридов щелочных металлов

Термодинамические свойства

Термодинамические свойства хлоридов

Хлориды свойства



© 2025 chem21.info Реклама на сайте