Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ФИЗИЧЕСКАЯ ХИМИЯ Учение о растворах

    Основное содержание учебника составляют разделы, которые, судя по монографиям и периодической литературе, наиболее необходимы биологам. Прежде всего это основы термодинамики и химическое равновесие, физическая химия растворов неэлектролитов и электролитов, учение о пограничных потенциалах и электродвижущих силах, химическая кинетика и катализ. В дополнение к традиционному изложению этих разделов приведено описание некоторых специфических приложений физической химии, важных для биологии. Так, кратко рассмотрены свойства полиэлектролитов, ионный обмен, мембранное равновесие и мембранные потенциалы, ионоселективные электроды, основы хроматографии и экстракции. [c.3]


    Материал учебника несколько шире рамок действующей программы. В него вошли такие разделы физической химии, как основы учения о строении вещества и химической связи, теория спектральных методов исследования. Несколько более широко, чем в обычных курсах физической химии, даны такие разделы, как свойства электролитов, электрохимия, экстракция, перегонка с водяным паром, адсорбция, катализ, получение и стабилизация золей и эмульсий, мицеллообразование и солюбилизация в растворах поверхностноактивных веществ (ПАВ), применение ПАВ в фармации. Рассмотрено влияние дисперсности на свойства порошков. Принимая во внимание аналитическую направленность специальности Фармация и важное значение методов молекулярной спектроскопии для исследования и анализа лекарственных веществ, авторы уделили большое внимание изложению теории физико-химических методов анализа (рефрактометрия, поляриметрия, фотометрия, спектрофо-тометрия, кондуктометрия, потенциометрия, полярография, хроматография, электрофорез и др.). [c.3]

    Книга известного венгерского ученого, президента АН Венгерской Народной Республики Т. Эрдеи-Груза посвящена экспериментальным и теоретическим исследованиям в области физической химии водных растворов, т. е. обычной среде, в которой протекает большинство процессов, происходящих в природе и применяемых в технике. В книге рассмотрены вопросы вязкости водных растворов электролитов и неэлектролитов, диффузии и электропроводности. [c.4]

    Смысл коэффициента i был вскоре раскрыт Аррениусом в его теории электролитической диссоциации. Эта теория была как бы завершением определенного этапа в совместном развитии двух направлений физической химии учения о растворах и электрохимии. Ее основная идея сводится к гипотезе о распаде в растворе молекулы электролита на ионы. [c.141]

    Основными проблемами, характеризующими направление и определяющими предмет физической химии, являются учение о строении и важнейших свойствах веществ, находящихся в газообразном, жидком, кристаллическом и плазменном состояниях учение о растворах, их внутренней структуре и свойствах, зависящих от концентрации и химической природы компонентов, составляющих растворы а также проблемы химической термодинамики, которая изучает связь между химической и другими видами энергии электрохимия, связанная с изучением электропроводности, электролиза, работы гальванических элементов и др. химическая кинетика, изучающая скорости и механизм химических реакций в гомогенных и гетерогенных системах, а также явления катализа. [c.5]


    Таким образом, к началу XX века определялись основные направления физической химии как науки, изучающей строение вещества и его свойства в различных агрегатных состояниях, химическую термодинамику, включая термохимию и учение о равновесиях, растворы, в том числе и коллоидные, кинетику химических реакций и электрохимию. [c.18]

    Настоящий курс физической химии написан с учетом возрастания требований к теоретической подготовке студентов. Перед коллективом авторов стояла задача написать книгу, отвечающую программе для химико-технологических институтов и в то же время такую, которая не устарела бы сразу по выходе из печати, учитывая неуклонное развитие науки о веществе и его превращениях. Этим определены особенности данного курса, в нем рассмотрены основные разделы физической химии — учение о строении вещества и химической связи, теория спектральных методов исследования молекул, химическая термодинамика (феноменологическая и статистическая), учение о фазовых равновесиях и растворах, электрохимия, химическая кинетика и катализ. Исключение материала, традиционно включаемого в учебники, но не имеющего прямого отношения к программе (учение о газах, жидкостях и т. п.), позволило уделить больше места основному содержанию физической химии. Материал пособия несколько выходит за рамки действующей программы, но тем самым предоставляются возможности использовать его при неизбежных ее изменениях и, что не менее важно, это делает его полезным для аспирантов и научных сотрудников, специализирующихся в области физической химии. Материал, который может быть опущен студентом при первом прочтении, выделен петитом. [c.3]

    Электролитами называют вещества, растворы и расплавы которых проводят электрический ток (см. разд. V. 14). Их растворы и расплавы — наиболее сложные, а потому — и самые интересные объекты изучения методами физической химии. По тому, как совершенствовались представления о строении растворов электролитов, можно судить о ходе развития физической химии вообще. Большой вклад в развитие теории растворов электролитов сделали многие ученые физико-химики, в числе которых Гротгус, Вант-Гофф, Аррениус, Оствальд, Менделеев, И. А. Каблуков (1857—1942), Д. П. Коновалов (1856—1929), М. С. Вревский (1871—1929), В. Нернст (1864—1941), П. Дебай (1884—1966), Хюккель, Льюис, Н. А. Измайлов (1907—1961), К. П. Мищенко (1901 —1979) и др. Детальное обсуждение развития учения о растворах заняло бы слишком много времени, поэтому ограничимся рассмотрением современных представлений о растворах электролитов, затрагивая при этом лишь наиболее значимые этапы развития. [c.204]

    В первом разделе учебника изложены основы физической химии учение об агрегатном состоянии вещества, химическая термодинамика, учение о растворах, электрохимия и др. Во втором разделе описаны свойства различных дисперсных систем и поверхностные явления. С современных научных позиций изложены классификация дисперсных систем, свойства растворов коллоидных ПАВ и высокомолекулярных соединений. [c.2]

    В развитии теории аналитической и физической химии неводных растворов большую роль сыграли работы советских и иностранных ученых Н. А. Измайлова, К. П. Мищенко, А. М. Шкодин а, А. П. Крешков а, Кольтгоф а, Палит а, Холла и др. [c.6]

    Химию и физическую химию неводных растворов сильно продвинули вперед Ганч, Франклин, Краус, П. И. Вальден, В. А. Плотников и многие другие ученые. Знакомство с невод- [c.6]

    В подготовке учителя химии знание физической химии играет существенную роль для более глубокого понимания общетеоретических основ неорганической, органической и биологической химии, а также физиологии животных и растений. Основные разделы программы химии средней школы связаны с физической химией учение о молекулярных растворах и электролитах, о скоростях химических реакций, сущность коррозионных процессов и других являются теоретической основой изучения химии на уровне средней школы. [c.10]

    Все эти задачи требуют как развития соответствующих областей физической химии (учения о поверхностных явлениях, теории жидких растворов и др.), так и применения новых физических методов разделения. [c.494]

    ФИЗИЧЕСКАЯ ХИМИЯ — важная отрасль химической науки, которая использует все достижения физики и математики для исследования, объяснения, установления закономерностей химических явлений и свойств вещества. Ф. х. включает учение о строении вещества, химическую термодинамику и химическую кинетику, электрохимию и коллоидную химию, учение о катализе, растворах, фотохимию и радиационную химию. Значение Ф. х. как науки непрерывно возрастает, так как она является теоретической основой для исследований как в отраслях неорганической, органической и аналитической химии, так и в разработке новых важнейших химикотехнологических процессов, путей управления существующими технологическими процессами и их усовершенствованием. Без использования достижений Ф. X. невозможно дальнейшее развитие всех других отраслей химии — неор- [c.262]


    Коллоидная химия, подобно физической химии, занимает пограничную область между физикой и химией. До начала XX в. наука о коллоидах содержала, главным образом, описание свойств высокодисперсных систем и методов приготовления коллоидных растворов. Изучение свойств коллоидов и накопление большого экспериментального материала показали, что коллоидные системы не укладываются в обычные рамки физи-ки и химии. Для объяснения накопленных материалов были созданы различные гипотезы и теории, а также специальные методы исследования высокодисперсных систем (ультрамикроскопия, нефелометрия, ультрафильтрация, электронная микро-роскопия, осмометрия, вискозиметрия и т. д.). Это обстоятельство показало, что учение о коллоидах целесообразно выделить в специальную науку. [c.7]

    Выдающийся вклад в развитии физической химии внес Д. И. Менделеев. Большой интерес представляют его исследования в области газов и растворов. Основание Оствальдом и Вант-Гоффом журнала Zeits hrift fur physi alis he hemie (1887), труды Вант-Гоффа, Аррениуса, Оствальда, Каблукова, Меншуткина, Курнакова и других в области химической термодинамики и кинетики способствовали выделению физической химии в самостоятельную науку. В XX в. революция в физике, связанная с трудами Планка, Эйнштейна, Шре-дингера и др., в области квантовой статистики и квантовой механики атомов и молекул привела к рассмотрению химических процессов на атомно-молекулярном уровне, к развитию учения о реакционной способности, центральным в котором стало исследование элементарного химического акта. Физическая химия успешно развивалась трудами наших ученых, таких, как Д. П. Коновалов (учение о растворах), Н. А. Шилов, И. Н. Семенов (химическая кинетика), А. А. Баландин (катализ), А. М. Теренин (фотохимия), Я. К. Сыркин (строение вещества), А. И. Фрумкин (электрохимия) и многих других, и ряда зарубежных. [c.7]

    Большие заслуги в области физической химии неводных растворов принадлежат советскому ученому Н. А. Измайлову (1907—1961), разработавшему единую количественную теорию влияния растворителя на силу электролита. [c.409]

    Подытоживая достижения, которыми характеризовался второй период развития физической химии неводных растворов, можно отметить, что все же между физической и химической теориями растворов было гораздо больше общего, чем считали тогда, в пылу дискуссии, представители этих направлений. Каждое направление числило за собой как выдающихся теоретиков, так и незаурядных экспериментаторов. Получая новые достоверные экспериментальные данные, представители каждой теории объективно способствовали развитию физической химии неводных растворов. И, наконец, немаловажным обстоятельством в развитии каждой теории и дискуссии вокруг нее явилось то обстоятельство, что направления эти возглавлялись большими учеными, для которых успех своего направления был, разумеется, весьма дорог, но еще дороже была истина. [c.12]

    Изучению распространения ультразвука в растворах посвящено очень много работ. Объясняется это в значительной мере тем большим значением, которое имеет для физики и физической химии учение о растворах. [c.207]

    Вант-Гофф впервые стал известен в ученом мире благодаря открытию тетраэдрического атома углерода (см. гл. 7), однако впоследствии он занялся физической химией и стал крупнейшим (после Оствальда) авторитетом в этой области химии. Вант-Гофф занимался, в частности, изучением растворов. К 1886 г. ему удалось показать, что поведение молекул растворенных веществ, беспорядочно перемещающихся в массе жидкости, в которой они растворены, описывается примерно теми же правилами, что и поведение газов. [c.116]

    Книга является первым томом учебного пособия Курс физической химии . В этом томе излагаются основы химической термодинамики, термодинамика растворов, учение о химическом и гетерогенном равновесиях, учение о поверхностных явлениях и адсорбции. [c.2]

    Книга В. А. Киреева Краткий курс физической химии составлена применительно к действующим программам по физической химии для нехимических высших технических учебных заведений. 15 ней изложены основные разделы физической химии строение вещества, химическая термодинамика, учение о растворах, электрохи-М1 я, кинетика, учение о коллоидном состоянии н др. [c.2]

    Необходимо особо подчеркнуть практическое значение водных растворов, так как подавляющее большинство процессов в природе совершается в водной среде. Водные растворы играют исключительно важную роль во всех процессах, протекающих в почвах, а также в животных и растительных организмах. Все природные воды представляют собой растворы различных солей. Различные биологические жидкости (кровь, лимфа, клеточный сок и т. п.) также являются растворами органических и неорганических веществ. Другими словами, водные растворы — системы, наиболее распространенные в природе, и потому учение о растворах является важным разделом физической химии. [c.37]

    Книга представляет собой издание, наиболее полно соответствующее программе по физической химии для студентов биологических специальностей Московского университета, а также других университетов страны. В ней изложены основы химической термодинамики, учение о химическом равновесии, физическая химия растворов неэлектролитов и электролитов, учение о пограничных потенциалах и электродвижущих силах, химическая кинетика и катализ. Небольшой раздел посвящен свойствам газов, необходимым для понимания основного материала. Дается краткое описание методов хроматографии, экстракции, ректификации, использования ионоселективных электродов и т. п. [c.2]

    Значительный вклад в развитие физической химии внесли русские ученые Г. И. Гесс (1802—1850 гг.) — автор выдающихся исследований по термохимии, Д. И. Менделеев (1834— 1907 гг.), В. Ф. Алексеев (1852—1919 гг.), И. А. Каблуков (1857—1942 гг.) — своими работами в области теории растворов, Н. С. Курнаков (1860—1941 гг.) — основоположник физике-химического анализа, Н. А. Шилов (1872—1930 гг.) — в области адсорбции и химической кинетики, В. А. Кистяковский (1865—1952 гг.) — в электрохимии. [c.4]

    Наибольшее внимание уделено второму разделу (гл. VII— XI), что соответствует практике преподавания физической химии в ЛГУ. Он посвящен учению о равновесиях. Здесь рассматриваются состояния простых и сложных систем, которые устанавливаются в результате химического взаимодействия частиц (молекул и атомов), понимаемого в самом широком смысле. Мы не проводим границы между взаимодействием друг с другом одинаковых частиц и разных, так как и в том, и в другом случаях в результате взаимодействия состояние системы (макро- и микроскопическое) меняется. Эта точка зрения была высказана еще Менделеевым в Основах химии , а также Коноваловым ( Об упругости пара растворов , 1928 г.) Изложение материала второго раздела книги основано на правиле фаз, которое является наиболее общим принципом, позволяющим в логической последовательности рассмотреть все химические равновесия, начиная с равновесий в однокомпонентных системах и кончая сложными равновесиями в многокомпонентных гомогенных и гетерогенных системах, в том числе в электролитах. [c.6]

    Учение о растворах. В физической химии изучается природа разнообразных типов растворов, их термодинамические свойства, а также общие закономерности связи [c.7]

    Кристалл зарождается в какой-то физической точке расплава или раствора и затем от этой точки начинается его рост. Вопрос о начальной стадии образования кристаллических зародышей давно привлек внимание ученых. Однако он считается нерешенным и в настоящее время. Большой интерес в учении о кристаллах представляют исследования Г. Таммана, основные выводы из которых обычно излагаются в курсах физической химии, металловедения, металлографии и физики. Г. Тамман исследовал переохлажденные стеклообразные расплавы, главным образом органических веществ, и выдвинул идею о самопроизвольном (спонтанном) зарождении центров кристаллизации в переохлажденных жидкостях. Он полагал, что в некоторых местах переохлажденной жидкости молекулы сами по себе располагаются в кристаллическом порядке и образуют зародыш. [c.229]

    Я. И. Михайленко — ученик химической школы, возглавляемой гениальным русским ученым Д. И. Менделеевым. Родился Яков Иванович 18 октября 1864 г. в Киеве. После успешного окончания Киевского университета началась его научно-педагогическая деятельность . Его познания в области химии были энциклопедичны. Он читал курсы общей, неорганической, органической, аналитической и физической химии. Научно-исследовательская деятельность Я. И. Михайленко отличалась большой многогранностью. Круг его научных исканий обширен. Исследования Я. И. Михайленко были посвящены той области химической науки (эволюция представлений о строении атомов и молекул теория окислительновосстановительных процессов химия комплексных соединений, теория растворов и т. п.), которая предопределила бурное развитие всех областей химии в последующие годы. [c.3]

    Учение о растворах — одно из важнейших в физической химии. Хотя общее понятие о растворах включает в себя сложные системы, находящиеся в любых агрегатных состояниях, мы будем рассматривать преимущественно жидкие растворы, которые имеют особенно большое значение. [c.63]

    Ломоносов первый из отечественных ученых начал применять физические методы исследований в химии. Закон сохранения массы вещества и энергии был одним из важнейших открытий Ломоносова в области физической химии. Ломоносовым установлено, что понижение температуры замерзания раствора зависит от его концентрации, и эта температура бывает всегда ниже температуры замерзания чистого растворителя. Им сделан и ряд других открытий и исследований. [c.6]

    Предлагаемая краткая историческая справка не претендует на сколько-нибудь подробный перечень имен и характеристику ученых, которые внесли вклад в развитие физической химии неводных растворов. Именно поэтому здесь и не будут рассмотрены исследования в интересующей нас области, относящиеся к начальным (т. е. доатомно-молекулярным) периодам развития химии — какие бы славные имена, подобно М. В. Ломоносову и А. Лавуазье, не были при этом упущены. Несомненно также и то, что работы этих ученых в области неводных растворов, как и исследования классиков естествознания Бургаве, Ловица, Фарадея, Гей-Люссака и некоторых других, еще ждут своего историографа. Особенный интерес в этом плане представляют совершенно недостаточно оцененные историками химии работы Гротгуса, деятельность которого, приходившаяся на первые десятилетия прошлого века, предвосхитила многие идеи классиков физической химии, но, к сожалению, в силу причин исторических, не стала их предтечей. [c.5]

    Иван Алексеевич Каблуков (1857—1942) занимался изучением электропроводности растворов. Его работа Современные теории растворов (Вант-Гдффа и Аррениуса) в связи с учением о химическом равновесии оказала большое влияние на развитие физической химии в России и способствовала углублению теории электролитической диссоциации. [c.234]

    Несмотря на изменения представлений о строении макро моле-кул, растворы полимеров всегда рассматривались как коллоидные системы. Одиако в 1937 г. их принадлел ность к коллопдам была взята под сомнение. В. А. Каргиным с сотр. в 1937 г. было установлено, что растворы полимеров являются термодинамически устойчивыми системами. Этот факт явился большим вкладом в науку о полимерах и о коллоидных системах вообще. В то же время, считая термодинамическую неустойчивость принципиальной особенностью коллоидных систем, авторы сделали вывод о том, что растворы полимеров являются истинными растворами, а не коллоидными. В связи с этим некоторые ученые даже предлагали выделить физическую химию полимеров вообще из коллоидной химии. [c.310]

    В учебнике (1-е изд. — 1986 г.), написанном в соответствии с утвержденной программой курса, изложены осноны химической термодинамики, учение о химическом равновесии, физическая химия растворов электролитов и неэлектролитов, учение о пограничных потенциалах и электродвижущих силах, химическая кинетика и катализ. Дается краткое описание методов хроматографии, экстракции, ректификации, использования ионоселектнвных электродов. Рассмотрены исходные положения термодинамики неравновесных процессов. [c.2]

    Естественно, что и до этого времени был получен целый ряд выдающихся результатов, на базе которых развивались те или иные разделы физической химии. Можно перечислить некоторые из них открытие адсорбции газов (К. Шееле — в Швеции, 1773 г., Ф. Фонтана — во Франции, 1777 г.), адсорбции из растворов (Т. Е. Ловиц — в России, 1785 г.) открытие каталитических реакций и установление представлений о катализе (Г. Дэви и Л. Тенар — в Англии, И. Берцелиус — в Швеции, начало XIX в.) открытие гальванических элементов и исследование переноса тока в электролитах, открытие электролиза (Л. Гальвани, А. Вольта — в Италии, В. В. Петров, К. Грот-гус — в России, Г. Дэви, М. Фарадей — в Англии, конец XVIII в. — начало XIX в.) исследование теплоты химических реакций (А. Лавуазье, П. Лаплас — во Франции, 1779—1784 гг., Г. Гесс — в России, 1836—1840 гг.) открытие первого и второго законов термодинамики (С. Карно — во Франции, Р. Майер, Г. Гельмгольц, Р. Клаузиус — в Германии, Дж. Джоуль, В. Томсон— в Англии, середина XIX в.) и последующее развитие тер-модинамического учения о химическом равновесии (К. Гуль-берг и П. Вааге —в Норвегии, Гиббс —в США). [c.7]

    Новое направление в исследованиях многокомпонентных систем было создано работами Н. С. Курнакова и привело к развитию физико-химического анализа — учению о зависимости свойств физико-химических систем от состава. К числу больших достижений XX в. относятся теория растворов сильных электролитов П. Дебая и Э. Хюккеля (1923), теория цепных реакций (Н. А. Шилов, Н. Н. Семенов), теории катализа. В последние годы интенсивно развиваются методы исследования строения и свойств молекул. К ним относятся электронный резонанс (ЭМР), масс-спектрометрия и др. Большой вклад в развитие физической химии внесли советские ученые Я. К. Сыркин, М. Е. Дяткииа (метод молекулярных орбиталей), Н. Н. Семенов (теория цепных реакций), А. Н. Фрумкин (фундаментальные исследования в области электрохимии), Н. А. Измайлов (теория электрохимии неводных растворов). [c.8]

    Последовательно изложены основные положения химической термодинамики, учения о гетерогенных равновесиях, химическом равновесии, термодинамике растворов, поверхностных явлениях и электрохимии. В отличие от имеющихся пособий по физической химии усилены такие разделы курса, как термодинамика гетерогенных равновесий, поверхностные явления и электрохимия при рассмотрении ряда тер/лодинамических характеристик привлекается периодический занон Д. И. Менделеева. Книга рассчитана на повышенный уровинь математической подготовки. [c.335]

    Один из основоположников физической химии. Основные научные работы посвящены учению о растворах и кинетике химических реакций. На основании евоих исследований (1882—1883), свидетельствовавших об увеличении электрической проводимости и активности растворов при их разбавлении, сфо- [c.118]

    Михаил Васильевич Ломоносов — великий русский ученый — одни из основоположников новой химии. Он открыл основной закон химии — закон сохранения массы веществ. Разработал теорию атомно-молекуляриого строения веществ, являющуюся основой физики и химии. Ввел в химию количественные методы исследования. Объединил химию с физикой, создал новую науку — физическую химию. Большим вкладом в науку являются его работы по исследованию растворов. С имеием Ломоносова связано развитие в России различных иаук. Историк, ритор, механик, химик, минералог, художник и сти.хотворец — он все испытал и все проник , — писал о нем А. С. Пушкин. [c.4]


Смотреть страницы где упоминается термин ФИЗИЧЕСКАЯ ХИМИЯ Учение о растворах: [c.426]    [c.7]    [c.8]    [c.23]   
Смотреть главы в:

История химии -> ФИЗИЧЕСКАЯ ХИМИЯ Учение о растворах




ПОИСК





Смотрите так же термины и статьи:

Растворы учение

Физическая химия



© 2025 chem21.info Реклама на сайте