Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярография с анодным растворение применения

    Применение фазоселективного выпрямителя в переменнотоковой полярографии дает возможность полностью устранить емкостный ток, поскольку он опережает фарадеев ток (остаточный ток, обусловленный электродной реакцией деполяризатора). Ход перемениотоковой полярограммы становится понятным пр сопоставлении переменнотоковой полярограммы с постояннотоковой (рис. Д. 120). На постояннотоковой полярограмме (верхняя диаграмма) чистому фоновому электролиту соответствует кривая 1 (штриховая линия). Подъем на этой криво/г при. положительном потенциале ртутного капельного электрода обусловлен анодным растворением ртути, а при большом отрицательном значении потенциала— выделением катионов фонового электролита. При добавлении к фоновому электролиту деполяризатора ход кривой 2 вначале будет таким же. Вблизи потенциала полуволны деполяризатора возникает волна, а затем на кривой снова наблюдается горизонтальный участок до значения потенциала разложения фонового электролита. Небольшое переменное напряжение, наложенное на линейно возрастающее постоянное напряжение переменнотоковой полярографии (в точках а, б, в), вызывает в области небольшого возрастания постояннотоковой полярограммы (а и в) незначительное изменение силы тока, но большое изменение потенциала полуволны в области б, обозначенное б. Поскольку, как указано выше, протекает только переменный ток, на переменнотоковой полярограмме (нижняя диаграмма) наблюдаются только эти изменения. Для обычных деполяризаторов возникают максимумы при значениях их потенциалов полуволн. Таким образом,, в идеальном случае переменнотоковая полярограмма совпадает с первой производной соответствующей постояннотоковой полярограммы (рис. Д.121), а также с дифференциальной полярограммой. Существенным отличием является очень небольшой максимум в случае необратимого электродного процесса,, поскольку малого значения переменного напряжения уже недостаточно для окисления и восстановления соответствующего количества деполяризатора на электродах. Поэтому применение переменнотоковой полярографии ограничено обратимостью электродных реакций. Однако этот метод имеет то преимуще- [c.302]


    Джекобе [1074] определял вольтамперометрически 5,0-10 — —2,50-10 г-ион л Аи анодным окислением золота, электролитически осажденного на электроде из угольной пасты. Электролиз проводят при +0,1 в (отн. н.к.э.) в течение 15 мин, анодное растворение выполняют при потенциале от +0,3 до +1,3 в, анодный пик наблюдается при +0,85 в. Фоном служит 0,1 М НС1. Метод позволяет анализировать смеси Аи + Ag. Предложен [535] инверсионный вольтамперометрический метод определения 10 —10 % Аи с применением электрода из угольной пасты. Метод заключается в электролитическом выделении золота при контролируемом потенциале +0,2 в на поверхности электрода в виде пленки на фоне 0,1—1,0 М НС1 в течение 15—30 мин с последующим растворением золота при линейно изменяющемся потенциале от +0,2 до + 1,3 б. Метод применен для определения 1-10 % Аи в сурьме 0,22—1,01% Аи в покрытиях на вольфраме и молибдене 0,32% Аи в покрытиях на вольфрамовой нити, намотанной на никелевую деталь (0,9—1,3)-10 % Аи в золе растений. Ошибка при определении 5-10 % Аи равна +12%. Позже этот метод применен [91] для определения 0,3 мкг мл Аи в полупроводниковых сплавах Sn — Au после разделения компонентов методом тонкослойной хроматографии. Фон 1 М НС1, потенциал предварительного электролиза +0,2 в, потенциал электрорастворения 0,2—1,3 в, время накопления 10 мин. Найдено 0,29+0,01 мкг мл Аи (и = 6, а = =0,95), коэффициент вариации 2,8%. Монин [1242, 1243] определял 25—500 нг мл Аи методом пленочной полярографии с накоплением. Золото выделяют в течение 5 мин электролизом на электроде [c.174]

    В подавляющем большинстве случаев электролиз с контролируемым потенциалом проводится с использованием ртутного или платинового рабочего электрода. Высокое перенапряжение водорода на ртути является важным преимуществом при использовании ее в качестве катода, однако анодное растворение ртути ограничивает ее применение в качестве электрода в анодной области для кулонометрии точно так же, как и для полярографии. Ртутные катоды, кроме того, обладают такими полезными характеристиками, как легко определяемая истинная площадь, обновляющаяся поверхность и относительная легкость очистки. Однако самое большое значение для химика-аналитика имеет тот факт, что полярографические данные о потенциалах полуволн, о продуктах восстановления и т. п. могут во многих простых случаях непосредственно применяться для выбора условий электролиза при кулонометрии на ртутных катодах. Однако здесь необходима известная осторожность многие процессы, которые кажутся простыми на микроэлектродах ввиду пренебрежимо малого накопления продуктов электролиза, оказываются гораздо более сложными, когда проводятся на больших ртутных катодах. Следует также иметь в виду, что сама ртуть может действовать как химический восстановитель следовательно, легко восстанавливаемые вещества должны приводиться в контакт с ртутными катодами только в том случае, когда к ячейке приложен нужный потенциал электролиза для предупреждения возможности предварительного химического восстановления. [c.36]


    Метод осциллографической полярографии был применен также для определения примесей Си, Те и 2п в арсениде галлия, мышьяке и свинце. При этом был использован принцип накопления примесей на стационарном электроде с автоматически воспроизводимой каплей [31] с последующим анодным растворением амальгамы. Определение меди и теллура в ОаАз можно проводить непосредственно после растворения навески образца в царской водке на фоне 1 М НС1 предэлектролиз проводят при — 0,75 е в течение 5—10 мин. при перемешивании раствора. Затем снимают анодную осциллограмму от—0,75 до+0,1 в. Примеси Си и Те определяют методом добавок. Для определения цинка необходимо отделять галлий экстракцией диэтиловым эфиром из 5—6 М раствора НС1, а мышьяк отгонять выпариванием раствора с НВг. [c.202]

    Возможно [1101] определение 1 10 г-ион1л Аи методом осциллографической полярографии после электролитического обогащения золота. В качестве электрода применен платиновый вибрирующий электрод. Определению не мешает 10 г-ион1л Си. Изучено [200] анодное растворение золота на графитовом электроде. Оптимальный потенциал электролиза золота на фоне 0,4 М НС1 лежит в пределах от 0,0 до -t-0,4 в, потенциал пика анодного растворения -f0,85 в. Разработан вольтамперометрический метод определения золота с чувствительностью 3-10Т % в Ga и GaAs. Не мешают Си, РЬ и Ag. [c.174]

    В последнее время широкое распространение получил новый метод полярографического анализа, основанный на предварительном электролитическом концентрировании металлов на стационарных электродах и последуюш,ем анодном растворении их при постепенно снижаюш,емся отрицательном потенциале [1—4]. Брос-ковый ток на стационарном электроде, полученный в определенных условиях, правильно отражает явление концентрационной поляризации и может быть использован для построения полярографических 1—Е кривых [5—6]. Необходимым условием воспроизводимости бросковых токов является полная гальваническая деполяризация электрода после каждого измерения, осуш,ест-вляемая коротким замыканием электродов. При коротком замыкании электродов после предварительного электролиза наблюдается обратный бросок тока, являюш,ийся следствием разрядки гальванического элемента. До последнего времени обратный брос-ковый ток не привлекал достаточного внимания исследователей, и поэтому в настояш ей работе нами была предпринята попытка изучить это явление и выяснить возможности применения его в полярографии. [c.179]

    При съемке поляризационных кривых анодного растворения нержавеющих сталей во время электрополировання падение напряжения в электролите и поляризация катода составляют примерно 2/3 общего падения напряжения на ячейке. Из-за нелинейности поляризационной кривой катода в этих условиях применение автоматических установок типа полярографа для съемки анодных поляризационных кривых невозможно. В связи с этим потребовалось создать устройство, автоматически записывающее по- [c.10]

    Метанол широко используется в препаративной электрохимии, например для проведения реакции анодного декарбоксилирования и анодного метоксили-рования. Эпизодически растворитель применялся также при полярографии на КРЭ. Метанол не пригоден в качестве растворителя для вольтамперометрии на платиновом микроэлектроде или кулонометрии при контролируемом потенциале на том же электроде. Метанол находится в жидком состоянии в удобной для работы области температур (от -98 до +64 °С). Имеет весьма высокое давление паров и достаточно высокую диэлектрическую постоянную (33). Максимальная допустимая концентрация составляет 2 10 %. Хотя по своему поведению метанол похож на воду, он сильнее растворяет различные органические соединения. Метанол подходит как растворитель для ультрафиолетовой спектроскопии поглощение наблюдается при 210 нм. Главное применение метанола связано с тем, что он хорошо растворяет сильноосновные электролиты КОН, NaOH, КОМе и NaOMe. Для растворения очень неполярных соединений используются смеси метанола с бензолом. [c.37]

    Это высокое перенапряжение позволяет работать с капельным ртутным электродом в кислой среде при потенциалах до —1,5 В. В области положительных потенциалов, т. е. когда капельный ртутный электро д служит анодом, его применение ограничивается 4-0,4 В, так как выше этого значения начинается анодное окисление и растворение ртути. Поэтому и область использования этого электрода в полярографии для кислых растворов ограничена интервалом от —1,5 до - -0,4 В. В сильнощелочной среде, созданной четвертичными аммониевыми гидроокисями типа МК40Н, дополнительно возрастает перенапряжение водорода на ртути, в силу чего в подобных растворах капельный ртутный электрод можно, использовать при потенциалах —2,4 В. В этих условиях становится возможным полярографическое определение ионов щелочноземельных и даже щелочных металлов. Так, в 0,2 н. М(СНз)40Н можно определять Ма+ (Б/г = — 2,1 В), чему не мешает присутствие небольших количеств К (если [Ыа ИК ] 8). В присутствии большого количества калия его необходимо предварительно осадить и отделить, например, магниевой солью дипикриламина. [c.323]


    Метод осциллографической полярографии был применен также для определения ниобия в тантало-ниобиевых сплавах. Он основан на непосредственном определении ниобия на фоне 10—23 N Н2504 после растворения 0,1 г сплава. Ниобий может быть определен либо по 1-й катодной волне (в 23 N Н2504), либо по анодной волне при любой из указанных концентраций Н2504. Определение проводят за 5—10 мин. (после растворения образца). [c.200]

    В заключение необходимо остановиться еще на одной области ис следования, в которой применение осциллографического полярографа окал<ется, вероятно, весьма плодотворным. Имеется в виду обнаружение и онределение в околоэлектродном пространстве концентрации промежуточных (в том числе неустойчивых) продуктов электролиза, В нд-стоящее время разработан ряд методов (в основном, косвенных), позволяющих подойти к решению этой важной для электрохимической кинетики задачи. К ним относятся определение аномально высоки.х выходов по току, наблюдаемых при растворении ряда металлов , измерение наклона катодной и анодной ветвей поляризационных кривых , изучение разностного эффекта и т, д. [c.43]


Физические методы анализа следов элементов (1967) -- [ c.291 ]




ПОИСК





Смотрите так же термины и статьи:

Анодное растворение

Полярограф

Полярография

Полярография применение

Ток анодный



© 2025 chem21.info Реклама на сайте