Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смеси темп. кип

    Еще большее значение для удаления воды, особенно для абсолютирования некоторых органических растворителей, имеют тройные азеотропные смеси (табл. 17). Названный способ, в частности, успешно применяется при получении абсолютного спирта не только в лабораторных, но и в производственных условиях. Так, при перегонке смеси этилового спирта с бензолом сначала отгоняется тройная смесь (темп. кип. 64,86°), содержащая 74,1% бензола, 18,5% спирта и 7,4% воды, а затем двойная смесь (темп. кип. 68,24°), содержащая 67,6% бензола и 32,4% спирта, после чего перегоняется абсолютный спирт. [c.35]


    Исходная смесь Темпе- ратура Содержание компонентов, %  [c.23]

    Технический продукт после перегонки представляет собой 85%-ную муравьиную кислоту (азеотропная смесь, темп. кип. 107° С). Для получения более концентрированной муравьиной кислоты суспензию формиата натрия с избытком ранее полученной муравьиной кислоты обрабатывают концентрированной серной кислотой. В лаборатории безводную муравьиную кислоту готовят обезвоживанием 85%-ной кислоты фосфорным ангидридом. [c.237]

    Смесь Темпе- рат ,а. Молярная доля первого газа Коэффициент теплопроводности, брит. тепл. ед./час-фут-°Р Коэффициент теплопроводности, ккал [c.720]

    Путем ректификации водного спирта в колоннах с большим числом тарелок может быть получена азеотроп-ная смесь (темп. кип. 78,1°), содержащая ие более 95,6% чистого этанола и пе менее 4,4% воды. [c.395]

    Требуемый в ряде случаев безводный этиловый спирт получают азеотропной дистилляцией с бензолом. Бензол с водным спиртом образует тройную азеотропную смесь (темп. кип. [c.395]

    Для удаления воды в реакционную жидкость пропускают пары этил-ацетата, образующего с водой азеотропную смесь (темп. кип. 70,4°), содержащую 8,2% воды. [c.458]

    Горючая смесь Темпе атура, [c.246]

    Зная энтальпии паров 6 и ( , равные Я1=2018,5 кДж/кг и Я1 = = 1858,1 кДж/кг, а также энтальпию жидкого сырья =117,6 кДж/кг, можно рассчитать среднюю энтальпию единицы массы общей. смеси в декантаторе она будет равна 498,6 кДж/кг. Из тепловой же диаграммы, приведенной на рис. VI.2, непосредственно следует, что жидкая гетерогенная смесь совокупного состава =0,4645 должна при =40 иметь энтальпию = 118,5 кДж/кг. Следовательно, чтобы обеспечить необходимую темпе. Ратуру расслоения =40 °С, от каждого 1 кг жидкой гетерогенной смеси поступающей в декантатор, следует отнимать в конденсаторе еще ДЛ = = 498,6 — 118,5 = 380,1 кДж/кг тепла. [c.270]

    Через слой катализатора при температуре 900° С пропускают смесь углеводородов и водяного пара. Образование горючих газов сопровождается понижением температуры слоя катализатора и отложением углерода на катализаторе. Для поддержания температуры в реакторе на определенном уровне получение горючих газов периодически прекращается, а катализатор продувается дымовыми газами с избытком воздуха. Отложившийся на катализаторе углерод при этом выжигают, а темпе- [c.186]


    В обычный запаянный с одного конца капилляр диаметром около 1 мм вносят необходимое количество жидкости с помощью другого более узкого капилляра диаметром 0,3—0,4 мм. Затем более узкий капилляр оплавляют и используют его для перемешивания жидкости в процессе кристаллизации, если она склонна к переохлаждению. Охлаждающая баня должна иметь температуру на 10—15 °С ниже температуры застывания жидкости. В связи с этим, для охлаждения применяют либо смесь льда и соли, либо ацетон и сухой лед . В охлаждающую баню помещают прибор для определения температуры плавлен ния с пустой внутренней пробиркой (рис. 91), в колбу которого наливают спирт или ацетон. Прибор снабжают спиртовым или толуоловым термометром. После того как прибор охладится до нужной темпе ратуры, к термометру прикрепляют охлажденный в той же бане капилляр с закристаллизовавшейся жидкостью и проводят определение температуры плавления обычным образом. Если скорость подъема температуры недостаточна, колбу обогревают струей теплого воздуха или рукой, если слишком высока — изолируют колбу ватой, оставив окошко для наблю дения. [c.180]

    При расчете колонн ректификации необходимо составить материальный баланс колонны. Если разделению подлежит многокомпонентная смесь, то два крайних компонента (самый легкий и самый тяжелый) называются ключевыми компонентами. Легкий ключевой компонент имеет самую низкую темпе ратуру кипения и обычно является компонентом, который в заметных количествах содержится в продуктах низа колонны. Тяжелый ключевой компонент в заметных количествах содержится в дистиллятных потоках. Обычно ключевые компоненты имеют почти одинаковую летучесть. Их невозможно разделить полностью, поэтому задача состоит в том, чтобы определить степень разделения, которая может быть достигнута в колонне определенных размеров при соответствующем количестве орошения и нагрузке ребойлера. [c.139]

    Температурой вспышки называется та низшая темпе ратура, при которой пожароопасная жидкость, испаряясь, образует с воздухом смесь, способную воспламениться при поднесении к ней источника зажигания. При вспышке количество выделившегося тепла недостаточно для того, чтобы вызвать новое выделение паров жидкости и воспламенить саму жидкость, поэтому горение прекращается. Температура вспышки — один из важнейших параметров, по которому определяется степень пожароопасности жидкости. Жидкости с температурой вспышки паров до 45 С, например эфир, бензол или метиловый спирт, называются легковоспламеняющимися (ЛВЖ), а с температурой вспышки выше 45 °С, например глицерин, нитробензол, фурфурол, этиленгликоль,— горючими жидкостями (ГЖ). Знание температуры вспышки имеет большое значение. для пожарной профилактики для надлежащего размещения зданий и аппаратуры, применения строительных конструкций и материалов, разработки мер по тушению пожаров и эвакуации людей. [c.31]

    Наибольщее промышленное применение получила дифенильная смесь, состоящая из 26,5% дифенила и 73,5% дифенилового эфира (этот теплоноситель известен также под названиями Даутерм А, динил и др.). Дифенильная смесь обладает большей термической стойкостью и более низкой температурой плавления ( + 12,3 С), чем составляющие ее компоненты. Дифенильную смесь можно транспортировать по хорошо изолированным трубопроводам, не опасаясь ее кристаллизации. Темпе- [c.317]

    Этиловый спирт (этанол, или винный спирт) С2Н5ОН. Представляет собой бесцветную жидкость с характерным запахом и жгучим вкусом (табл. 11). Смешивается в любых отношениях с водой от основной массы воды может быть отделен дробной перегонкой (ректификацией), но при этом образуется нераздельнокипящая смесь (темп. кип. 78,13° С), в которой содержится около 4% воды. Содержание (крепость) спирта выражают в объемных процентах. Крепость обычного чистого спирта — ректификата — равна 96%. Для получения совершенно безводного абсолютного) спирта ректификат обрабатывают веществами, химически связывающими воду (негашеная известь, безводный сульфат меди, металлический кальций). [c.114]

    С изопропиловым спиртом этот эфир дает постоянно кипящую смесь (темп. кип. 80,1°), содержащую 47,5% ивопропилацетг га и 52,5% спирта. Как указывалось раньше, эта см-есь предлагалась в качестве растворителя для нитроцеллюлозы . [c.405]

    Митчел и Смит (цит. выше) рекомендуют метод обезвоживания пиридина, основанный на удалении воды в виде азеотропной смеси с бензолом. Этим методом пиридин, содержавший 1,2% воды, был высушен до содержания менее 0,01% воды. При этом было добавлено 10 избытка бензола сверх того количества, которое требуется, чтобы удалить первоначально присутствовавшую воду, и была отогнана бензольно-водная смесь и избыток бензола. Последующая перегонка пиридина, ранее предварительно перегнанного, не требуется, так как и бензольно-водная смесь (темп, кип. 69,3°) и бензол (темп. кип. 80,1°) кипят при значительно более низких температурах, чем пиридин. Азеотропная смесь воды с бензолом содержит 8,9% Н2О пиридино-водная азеотропная смесь имеет темп. кип. 92,3° и содержит 41% воды. [c.136]


    Еще с большим успехом для удаления воды, особенно для абсо-лютирования некоторых органических растворителей, применяют отгонку тройных азеотропных смесей (табл. 32). Этим способом, в частности, пользуются при получении абсолютного спирта не только в лабораторных, но и в производственных условиях. Так, при перегонке смеси этилового спирта с бензолом сначала отгоняется тройная смесь (темп. кип. 64,86 °С), содержащая 74,1% бензола, 18,5% спирта и 7,4% воды, а затем двойная смесь (темп. кип. 68,24°С), содержащая 67,6% бензола и 32,4% спирта, после чего перегоняется абсолютный спирт. Для уменьшения количества необходимого для этой цели бензола дистиллат, образующийся при перегонке такой тройной азеотропной смеси, разделяют на два слоя. Верхний с.той (82,8% от массы дистиллата) содержит 0,6% воды, 85,8% бензола [c.64]

    Крекинг-процесс служит для превращения высококипящих (выше темпе]эатуры иинеиня бензина) составных частей нефти в смесь углеводородов, кипящих в интервале, типи Jпoм для бензиновых фракций. В ирин-ципе возмо киы два различные вида крекинга — термический и каталитический. [c.37]

    Остаточное сырье (гудрон) прокачивается через теплообмен — ники, где нагревается за счет тепла отходящих продуктов до темпе — ратуры 320 — 330 °С и поступает в нагревательно — реакционные змеевики параллельно работающих печей. Продукты висбрекинга выводятся из печей при температуре 500 "С и охлаждаются подачей квенчинга (висбрекинг остатка) до температуры 430 "С и направля — ются в нижнюю секцию ректификационной колонны К — 1. С верха этой колонны отводится парогазовая смесь, которая после охлаж— денИ5[ и конденсации в конденсаторах — холодильниках поступает в газосепаратор С—1, где разделяется на газ, воду и бензиновую фракцию. Часть бензина используется для орошения верха К — 1, а балагссовое количество направляется на стабилизацию. [c.51]

    Физические соображения о выборе разделяющего агента, а) Темп е-ратура кипения разделяющего агента. Цель добавления разделяющего агента к смеси состоит в облегчении очистки или разделения смеси посредством перегонки. Образующаяся азеотропная смесь долллна обладать температурой кипения, настолько отличающейся от температуры кипения других компонентов системы, чтобы разделение посредством перегонки было возможным. В то же время желательно, чтобы в азеотропной смеси содержалось максимальное количество продукта на единицу веса испаряющегося разделяющего агента. На рис. 19 можно видеть, что концентрация углеводорода в азеотропной смеси будет больше, когда применяется высококипящий разделяющий агент. С другой стороны, из рис. 20 видно, что максимальное понижение температуры кипения достигается при применении низкокипящего разделяющего агента [6]. Для оценки относительной роли этих двух факторов необходимо экономическое сопоставление капитальных затрат и эксплуатационных расходов.  [c.124]

    Ваттерман и Перкин показали, что хлопковое масло под давлением 132 ат Еодцрода и ирн темиературе 180° еще не гидрируется. При добавлении же некоторого количества никеля, нанесенного на кизельгур, через два часа обработки в тех же условиях был получен продукт гидрирования с температурой илавления 57—58° С. Рыбий жир (о темп. кип. зоо—400°), иод давлением в 4—Ю аг водорода, давал о выходом в 75% смесь соответственных 5"глеводородов п газ, содержавший Hi, СО и СОз. [c.346]

    В случае процессов, протекаюших в пламени, обратная теплопроводность осуществляется непосредственно через реагирующую газовую смесь, а не через катализатор. (Здесь имеет значение также и обратная диффузия свободных радикалов.) Если обратная теплопроводность не достаточно интенсивна, то темпе-рг1тура холодного газа, поступающего в реакционную зону, оказывается ниже температуры воспламенения и он выдувает пламя. [c.165]

    А. Саханов (514) подробно разработал методику определения асфальтов и остановился на следующем методе навеска исследуемой нефти растворяется в нефтяном эфире (не меньше 40-кратного объема) и смесь оставляется в колбе на ночь (в темпом месте). Выпавший асфальтен отфильтровывается через бумажный фильтр и хорошо, промывается таким же нефтяным эфиром до полной беетретности. Затем фильтр с осадком бросается обратно в колбу, где дроио и>-дило осаждение, но предвар ительно колба и приставший к тенкам ее асфальт хорошо промывается нефтяным эфиром. Из фидЬ гра и колбы горячим бензолом извлекается весь асфальтен, фильтруется в тарированную чашечку, которая и высушивается затем 15— 20 мин. при 105—110°. Полученный вес асфальтена в %% вычисляется на навеоку. Если осадок асфальтена содержит еще парафин, его надо [c.83]

    Стандартная температура самовоспламенения, при которой смесь самовоспламеняется, не является минимальной. Более /точный учет факторов, обусловливающих самовоспламенение, позволяет определить минимальную температуру самовоспламенения. Иногда она на 100—150°С ниже стандартной температуры самовоспламенения, что имеет большое значение при разработке пожарнопрофилактических мероприятий, связанных с высокотемпературным нагревом веществ. Минимальную темпе- ратуру самовоспламенения определяют на приборе со сферической колбой (прибор МакНИИ). Предельно допустимая температура безопасного нагрева поверхностей технологического оборудования должна быть ниже минимальной температуры самовоспламенения паров веществ, которые могут попасть на нагретую поверхность. [c.193]

    При с0(рнокислотном расщеплении гидроперекиси -втор.бутил-изонропилбензола получаются ацетон, метилэтилкетон, гидрохинон и смесь и-изопропилфенола и -втор.бутилфенола. Наличие этих продуктов показывает, что при окислении тг-втор.бутилизопропилбензола образуются гидроперекиси га-втор.бутил-а,а-диметилбензила (а), я-изопропил-а-метил-а-зтилбензила (б) и дигидроперекись (в). Если судить по выходу ацетона, то атака молекулярного кислорода легче осуществляется на третичный углерод изопропильной группы. Окисление в црисутствии резината марганца и различных добавок цри темпе ратуре 113—115 и 120° С представлено на рис. 31, 32. [c.275]


Смотреть страницы где упоминается термин Смеси темп. кип: [c.95]    [c.33]    [c.73]    [c.46]    [c.494]    [c.506]    [c.390]    [c.152]    [c.353]    [c.224]    [c.186]    [c.111]    [c.207]    [c.229]    [c.301]    [c.32]    [c.75]    [c.429]    [c.440]    [c.303]   
Техника лабораторной работы в органической химии Издание 3 (1973) -- [ c.237 ]




ПОИСК





Смотрите так же термины и статьи:

Хай Темп NAA



© 2025 chem21.info Реклама на сайте