Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Принцип атомности также атомность и строение химическое

    Еще одна крайняя точка зрения — изучение строения атомов до периодического закона. Такой подход, совершенно игнорирующий принцип историзма, также приведет к недооценке воспитывающей функции обучения. Ведь успешная разработка теории строения вещества оказалась возможной благодаря тому, что периодическая система элементов Д. И. Менделеева направляла ученых на поиски причин периодичности, стимулировала развитие науки. Величайшим проявлением гениальности Д. И. Менделеева было открытие периодического закона лишь на основе сопоставления атомных масс элементов и химических свойств веществ. Первоначальный вариант своей системы ученый так и назвал Опыт системы элементов, основанной на их атомном весе и химическом сходстве . В настоящее время в программе по химии принят наиболее оптимальный вариант тема расположена приблизительно в середине курса. [c.222]


    Новейшие представления о строении атома расширили и уточнили сведения о периодическом законе, объяснили многие вопросы, ответы на которые не мог дать периодический закон в первоначальной формулировке Д. И. Менделеева. Представление о величине заряда ядра как об определяющем свойстве атома легло в основу современной формулировки периодического закона Д. И. Менделеева свойства химических элементов, а также формы и свойства соединений этих элементов находятся в периодической зависимости от величины заряда ядер их атомов. Современная формулировка закона позволила объяснить кажущееся нарушение принципа расположения элементов в периодической системе в порядке возрастания атомных масс для четырех пар элементов Аг — К, Со — N1, Те — I, ТЬ — Ра. Она позволила объяснить причину периодического повторения свойств элементов, которая заключается в периодическом повторении строения электронных конфигураций атомов. По сходности строения электронных [c.106]

    Представление об объективности пространства на атомно-молекулярном уровне уже с первой половины XIX в. утверждалось в химической науке. Дж. Дальтон, исходя из принципа связи пространственного расположения атомов в сложных атомах химических веществ с их физико-химическими свойствами, одним из первых ввел в химию представления о важности фактора строения. Он показал, в частности, что то или иное расположение атомов в сложном атоме обусловливает их различное поведение в реакции. Позже явления изомерии, различие свойств у соединений, имеющих один и тот же химический состав, А. М. Бутлеров также объяснил неодинаковым порядком связей и расположением структурных частей по отношению друг к другу в молекулах изомеров. Необходимость учитывать пространственное строение молекул, их конфигурацию для объяснения новых форм изомерии, не охватываемых первоначальной теорией строения, привело к возникновению и развитию специального раздела химии — стереохимии. Открытие известным русским кристаллографом К. С. Федоровым законов -пространственного размещения атомов, ионов и молекул, образующих кристаллические структуры, сыграло большую роль в развитии кристаллохимии. [c.44]

    Рассматриваемая модель основывается на сравнительно простых концепциях и касается главным образом пространственной направленности валентных связей атомов различных элементов. Важнейшие из этих концепций сводятся вкратце к следующему. Пространственное распределение химических связей вокруг поливалентных атомов зависит прежде всего от общего числа электронов в валентной оболочке, причем неподеленные электронные пары должны приниматься во внимание наряду со связывающими. Для облаков всех этих пар вводится грубое приближение жестких сфер, окружающих атомный остов так, чтобы их взаимное отталкивание было минимальным. Квантовомеханической основой этих идей служит принцип Паули. Последующие постулаты касаются размеров облаков связывающих и неподеленных пар, кратных и полярных связей и т. д., т. е. в какой-то степени затрагивают также вопросы, связанные с межатомными расстояниями. Данная книга состоит из девяти глав. В первых двух даются общие сведения о строении атома и поведении электронов, гл. 3—5 посвящены основным положениям теории ОЭПВО, а в гл. 6—8 с позиций этой теории рассматриваются структуры молекул, образованных атомами элементов П—IV периодов системы Д. И. Менделеева и переходных металлов. В гл. 9 проводится интересное сравнение развиваемой в книге модели с методами валентных связей и молекулярных орбиталей. [c.6]


    В этой статье Марковников писал Я не хочу вместе с Гейн-цем упрекнуть Кекуле в том, что оп пе принял выражения химическое строение однако тот факт, что Кекуле высказывается об этом выражении в несколько своеобразной, как говорит Гейнц, форме, поражает меня тем более, что некоторые выводы Бутлерова... по-видимому, разделяет также п Кекуле. В своей статье О различных способах объяснения изомерии именно Бутлеров пытался показать нецелесообразность типов, особенно смешанных, а также связь между взглядами Кольбе и Кекуле. И вот в вышедшем позднее 2-м выпуске 2-го тома учебника Кекуле смешанных типов уже нет, п Кекуле, не упоминая о сказанном по этому поводу Бутлеровым, говорит здесь (2-й том, стр. 247 и 249) о формулах Кольбе почти то же самое, что и Бутлеров. Если, с одной стороны, прочесть следующие слова Кекуле (в том же выпуске, стр. 245) в этом учебнике постоянно отдавалось предпочтение одному роду рациональных формул, а именно тому, который заключает вытекающие из теории атомности элементов взгляды о способе соединения составляющих молекулу атомов , и, с другой стороны, учесть, что начало учебника Кекуле появилось уже четыре года назад, то приходится предположить, что Кеку.ле уже раньше принял и всюду последовательно применял принципы, которые Бутлеров подразумевает под именем химического строения . Одновременно приходится удивляться тому, что Бутлеров был вынужден еще раз повторить и дать новое название положению, ясно и отчетливо там высказанному. Однако уже сам Бутлеров в вышеупомянутой статье выявил в достаточной степени, что это не так, а ниже, надеюсь, я смогу показать, что принцип химического строения, на который делается намек в приведенных словах Кекуле, не находит последовательного применения и в этом выпуске его учебника [8, стр. 129-130]. [c.275]

    Квантовомеханические теории химической связи относятся к области квантовой химии. Разработаны различные варианты применения их для тех или других случаев. При этом широко используются метод самосогласованного поля, вариационный принцип, методы теории групп и другие методы, лежащие в основе построения теории строения атомов. Вместе с тем квантовомеханические теории химической связи используют некоторые методы, относящиеся специально к этой области, — определение так называемого интеграла перекрывания, метод линейной комбинации атомных орбиталей (ЛКАО) и др. Более подробно методы ВС и МО будут охарактеризованы в дополнениях, где описаны приближенные формы расчета молекул Нг и молекулярного иона водорода (Н2), а также даны примеры применения метода МО к некоторым группам органических соединений. [c.66]

    Углеводороды. Еще в первом выпуске Введения (1864 г.) Бутлеров [1, стр. 468] отрицал изомерию предельных углеводородов, считая, что для них различие химического строения немыслимо . Здесь, но его собственному признанию, он последовал за мнением Вюрца, отвергавшего возможность химической изомерии, основанной на различии в расположении атомов внутри молекулы, когда речь идет о двух насыщенных телах, в которых все свободные сродства углерода удовлетворены водородом [2]. Однако в том же 1864 г. Бутлеров полностью меняет свою точку зрения, относясь к своим прежним взглядам достаточно самокритично. Посылая Эрленмейеру статью О систематическом прнменении принципа атомности для предсказания случаев изомерии и метамерии для его журнала, он писал в сопроводительном письме Бы увидите, что в этой статье я откровенно сознаюсь в сделанной мною глупости, а именно, в вопросе об изомерии предельных углеводородов [3]. Бутлеров не только предсказывает в ней случаи изомерии для углеводородов С Ню и С5Н12 (см. стр. 115), но поясняет также, сколько и каких галогенопроизводных и соответствующих алкоголей может быть получено из этих углеводородов. [c.131]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]


    Постановка вопроса о коде, определяющем атомно-молекулярное строение и свойства вещества, типична для физики. Химические свойства атомов (т. е. структура периодической системы Менделеева) закодированы числом электронов в атома в соответствии с принципами квантовой механики. То же относится к атомным спектрам. Зная последовательность квантовых уровней, мы получаем кодовые условия для химии и оптики. Число и природа нуклонов в атомном ядре кодируют свбйства ядра. Систематика элементарных частиц и их превращений — одна из актуальных проблем современной физики — также [c.553]

    Учет энергетики гибридизации также важен при определении электронного строения молекулы, как и использование принципа наиболее выгодного перекрывания. Для иллюстрации рассмотрим образование гетероядерной двухатомной молекулы, например СО. Наиболее устойчивая гибридная орбиталь атома кислорода получает два электрона, которые становятся неподеленной парой этого атома, поскольку орбиталь энергетически слишком низкая и не может перекрываться с любой орбиталью атома углерода. Наоборот, в атоме углерода низшая sp-гибрид-ная орбиталь подходит высшей по энергии гибридной орбитали атома кислорода для образования сильной а-связи. Для этого должно произойти возбуждение единственного электрона на свя-зываюшей атомной орбитали углерода. Энергия возбуждения, или энергия гибридизации, больше, чем энергия, затрачиваемая на компенсацию при образовании сильной о-связи. Следствием будет наличие свободной пары у атома кислорода на низкоэнергетической ненаправленной s-орбиталн и свободной пары у атома углерода на высокоэнергетической направленной р-орбитали. Этим во многом определяется химическое поведение монооксида углерода. [c.162]

    То, что даже прекрасно зарекомендовавшие себя модели и основанные на них теории не следует превращать в символ веры, хорошо видно и пз истории науки оказались не структурными, а функциональными уже упомянутая модель теплорода (хотя она не только применима ь калориметрических исследованиях, но и позволила открыть основные законы термохимии) и еще более величественная модель светового эфира, которая играла в физике ненамного меньшую роль, чем атомная модель в химии была отвергнута модель одноатомиого строения простых газов и модели (формулы) химических соединений, построенные согласно принципу наименьшей простоты, предложенные в свое время Дальтоном наконец, рухнула дуалистическая модель конституции молекул в химии, а также первоначальная электрохимическая теория Берцелиуса, не говоря уже о сотнях и сотнях других моделей в химии, создававшихся пытливыми умами в течение всей ее истории вплоть до наших дней. [c.87]


Смотреть страницы где упоминается термин Принцип атомности также атомность и строение химическое : [c.228]    [c.43]    [c.263]    [c.43]    [c.263]    [c.125]    [c.127]    [c.130]    [c.12]    [c.130]   
Сочинения Теоретические и экспериментальные работы по химии Том 1 (1953) -- [ c.143 , c.160 ]




ПОИСК





Смотрите так же термины и статьи:

Строение химическое



© 2025 chem21.info Реклама на сайте