Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипропилен плотность

    С увеличением содержания хлора в полипропилене возрастают растворимость, хрупкость и плотность полиме,ра и уменьшается вязкость его растворов. Уменьшение вязкости показывает, что ири хлорировании изотактического полипропилена происходит деструкция его макромолекул. Температура плавления хлорированных полипропиленов, по мере увеличения содержания в них хлора, вначале снижается (по сравнению с температурой размягчения нехлорированного изотактического полипропилена), а затем вновь возрастает  [c.222]


    Полипропилен имеет высокие физико-механические и диэлектрические показатели (молекулярная масса 60 000—200 000, темп, пл. 164—170 °С, плотность 920 кг/м ). Он стоек к действию кислот, оснований и масел даже при повышенной температуре. При обычной температуре он ни в чем не растворяется, при температуре выше 80 °С растворяется в ароматических углеводородах и хлорированных парафинах. [c.305]

    Изотактический полипропилен —плотность 0,9—0,91 г/см , тем- [c.54]

    Свойство Полипропилен Полиэтилен высокой плотности [c.192]

    С деталями, имеющими электропроводный подслой, нужно обращаться очень осторожно, особенно при перемонтаже их на подвески для нанесения покрытий путем катодного восстановления. Во избежание перегрева электропроводного подслоя увеличивают площадь и количество контактных элементов подвески, осаждение электрохимического покрытия начинают при малой плотности тока (чаще всего при 0,2 —1,0 А/дм ). В качестве первого гальванического подслоя в большинстве случаев служит матовая медь, которая одновременно является буфером между диэлектриком и блестящим никелевым покрытием при резком изменении температуры. Она способствует также повышению прочности сцепления между электропроводным подслоем и последующим слоем покрытия. Хотя медь и имеет значительно меньший коэффициент линейного теплового расширения (1,7 10- °С), чем, например, пластмасса (АБС —8 10- полипропилен—6,3 10- °С), ее нагрев и расширение происходят быстрее. Это приводит к тому, что в каждом отдельном случае величины расширения или сжатия обоих материалов становятся почти равными. В качестве буферного подслоя используют и эластичные осадки матового или полублестящего никеля (коэффициент их линейного теплового расширения—1,3 10- /°С). Толщина буферного подслоя обычно не превышает 50 — 75 % общей толщины покрытия. [c.105]

    Полипропилен — кристаллический полимер с максимальной степенью кристалличности, 73—75% и молекулярной массой 80 000—200000 отличается низкой плотностью, повышенной теплостойкостью и прочностью. Без нагрузки его можно применять до 150°С. Из полипропилена изготовляют посуду, емкости, пленки и волокна. Полипропиленовые волокна обладают высокой водостойкостью, эластичностью и механической прочностью. Их применяют для изготовления тканей как самостоятельно, так и в сочетании с шерстью, полиамидными и другими синтетическими волокнами. [c.85]

    При получении высокомолекулярного стереорегулярного полипропилена, используемого для производства синтетических волокон, содержание кристаллических фракций в полимере достигает 85—95%. Однако по некоторым данным для получения волокон применяется полипропилен плотностью 0,91 г/см , в котором количество кристаллической фракции составляет 60—65%. [c.260]


    Увеличение плотности в основном сопровождается увеличением прочности полимеров. Исключение составляет полипропилен, плотность которого меньше плотности различных образцов полиэтилена, а прочность больше. [c.184]

    Этилен-олефиновые сополимеры Полиэтилен высокой плотности Полипропилен [c.282]

    В случае полимеров, которые могут быть получены как в кристаллическом, так и в аморфном состоянии, на графике отложены значения плотностей для аморфных образцов. Для аморфно-кристаллических полимеров, которые всегда обладают определенной кристалличностью (полиэтилен, полипропилен и т. д.), значения плотностей на рис. 4.2 соответствуют более аморфизованным образцам. Если для тех же полимеров принять значения плотностей сильно закристаллизованных образцов, коэффициент упаковки ощутимо возрастет. Таким образом, существенные отклонения от среднего коэффициента упаковки наблюдаются при глубокой кристаллизации полимеров (к этому вопросу мы вернемся ниже). [c.121]

    Приведем ряд примеров. Изотактический полипропилен обычно кристаллизуется в моноклинной форме. Однако при быстром охлаждении полипропилен кристаллизуется в виде сферических агломератов, состоящих из несовершенных гексагональных кристаллитов [9, 10]. Аналогичные результаты получил Уайт с сотр., исследуя волокно изотактического ПП, охлаждавшееся на воздухе и в воде [11 ]. Полибутен-1 при кристаллизации из расплава обычно образует кристаллы формы П [12]. Однако если расплав полибутена-1 подвергнуть деформации и только после этого произвести изотермическую кристаллизацию, то он кристаллизуется преимущественно в виде стабильных кристаллов формы I. Полимер, состоящий из кристаллов формы I, обладает более высокой плотностью (р = 930, Ри = 877 кг/м ). Более того, в ряде случаев наблюдается переход кристаллической формы П в форму I с максимальной скоростью при комнатной температуре [13]. Поэтому можно ожидать, что любые изделия из полибутена-1 будут подвергаться усадке при хранении. Величина этой усадки с увеличением деформации расплава уменьшается. Таким образом, инженер-технолог, прибегая к ориентации расплава, может избавиться от этой неприятной особенности весьма полезного полимера. [c.49]

    Пластические массы сравнительно легкие материалы. Их плотность находится в пределах от 0,9 (полипропилен) до 2,35 г/см (фторопласты). Плотность (объемная масса) перо- и пенопластов менее I г/см . Большинство полимеров легче металлов в пять-шесть раз. [c.224]

    Полибутилентерефталат Полиэтилентерефталат Поливинилхлорид Сополимер а-метилстирола с акри-лонитрилом Сополимер акрилонитрила с бутадиеном и стиролом, поликарбонат Полиэтилен низкой плотности Полиэтилен высокой плотности Этиленпропиленовый сополимер Полиизобутилен Полипропилен [c.36]

    Материалы с меньшей плотностью сгребают с поверхности отстойника 3 и направляют в резервуар с водой 4, в котором материалы не тонущие в воде, такие как полипропилен из корпусов аккумуляторов, отделяются от материалов, тонущих в воде иапример, от кусков эбонитовых корпусов аккумуляторов и частей аккумуляторных перегородок. Пластмассы, собираемые с поверхности резервуара 4, обычно направляют на переработку, а материалы, оседающие на дне резервуара, представляют собой отходы и отбрасываются. [c.241]

    Увеличение плотности в основном сопровождается увеличением прочности полимеров. Исключение составляет, например, полипропилен, плотность которого меньше плотности полиэтилена, а прочность больше. Естественно, что сверхориентированные, сверхвысокопрочные образцы полиэтилена прочнее торговых образцов полипропилена, но, вероятно, и плотность их суш,ественно отличается от плотности полиэтилена, приведенной выше. [c.189]

    Полипропилен перерабатывается обычно литьем под давлением, прессованием п экструзией. В промышленности перерабатывается почтп исключительно изотактический полипропилен. Методы переработки полипропилена в общем схожи с методами переработки полиэтилена высокой плотности. [c.302]

    При обычной температуре полипропилен обладает незначительной хладотекучестью и может длительное время работать под нагрузкой при 100° С. С повышением температуры прочностные его показатели падают столь же резко, как и полиэтилена. Основные физико-механические свойства полипропилена следующие плотность 0,907 Мг/м , предел прочности при растял ении 32,0 Mu m , при сжатии 60—70 Mh m , при изгибе 80—110 Мн/м относительное удлинение при разрыве до 650% температура размягчения 160—170° С теплостойкость по Мартенсу 110—120°С морозостойкость — 30—35°С. [c.424]

    После второй стуг[ени промывки полипропилен поступает в сушильный аппарат 7 и сборник-гомогенизатора. Гомогенизация пропилена заключается в том, что получаемый в течение одной смены или одних суток готовый полимер собирают вместе, перемешивают и определяют средние качественные показатели для данной партии товарного продукта. Необходимость гомогенизации обусловлена тем, что с течением времени П1эд влиянием различных факторов глубина полимеризации может меняться. Соответственно изменяются молекулярная масса и другие показатели (плотность, вязкость, температура плавления). Полипропилен должен удовлетворять вполне определенным средним для данной партии показателям, которые и определяют после гомогенизации. [c.52]


    Полимеризация в растворе позволяет регулировать молекулярную массу и молекулярно-массовое распределение полимера, получать структурно-однородные продукты. Она находит все более широкое применение в технологии производства многих промышленных полимеров. Для получения стереорегулярных полимеров, блок-сополимеров этот способ часто является единственно возможным для промышленного производства. Полимеризацией в растворе получают все стереорегулярные эластомеры цис-, А-по-лиизопрен и полибутадиен), блок-сополимеры бутадиена и стирола, некоторые виды статистических их сополимеров, полиэтилен высокой плотности, стереорегулярнын полипропилен, сополимеры этилена и пропилена, некоторые виды полистирола, полиметил-метакрилата и другие полимеры. [c.82]

    Полипропилен обладает ценными свойствами высокой температурой плавления (около 170° С) в сочетании с жесткостью и прочностью. Обладает небольшой плотностью (0,9 г1см ), высокой химической стойкостью, хо рошими диэлектрическими свойствами. Благодаря своим свойствам и доступности исходного пропилена полипропилен может найти применение для изготовления труб и трубопроводов для подачи горячей воды и различных химических веществ, центробежных насосов, химической аппаратуры, для изготовления большого ассортимента различных предметов домашнего обихода, санитарии и гигиены (посуда всевозможного назначения, ванны и пр.). [c.384]

    Стереорегулярный полипропилен представляет особый интерес в производстве синтетического волокна [72]. Стоимость пропилена в 5 раз ниже стоимости полистирола и в 9 раз ниже стоимости полиамидного и полиэфирного волокон. В то же время удельная прочность волокон из полипропилена выше удельной прочности найлона (табл. ХП.И). Плотность полипропилена очень низка, следовательно, ткани из него отличаются особенной легкостью к тому же они абсолютно влагостойки, имеют высокие электроизоляционные качества, стойки к действию растворов кислот и ш елочей. Недостаток полипропиленовой ткани заключается в сравнительно низкой температуре ее плавления. [c.790]

    К изоляционным материалам для работы в морской воде и других галогенсодержащих средах предъявляются значительно более высокие требования, поскольку в зависимости от содержания ионов хлора и плотности тока на аноде образуется хлор, отличающийся особой агрессивностью и разрушающий многие изоляционные материалы. Кислоты НС1 и Н0С1, образующиеся по уравнению реакции (8—26), разъедают материалы крепления анодов. Изоляционными материалами, стойкими против хлора, являются полипропилен, неопрен, хлоропрен, специальные разновидности поливинилхлорида (например, Тровидур НТ лат.) и специальные смеси эпоксидоз и ненасыщенных полиэфиров. Особым требованием является также обеспечение надежного сцепления между материалом анода и изоляцией. Даше при большой чистоте нередко [c.206]

    Стереоизомеры полипропилена (изотактические, синдиотакти-ческие, атактические и стереоблочные) существенно различаются ио механическим, физическим и химическим свойствам. Атактический полипропилен представляет собой каучукоподобный продукт с высокой текучестью, температура плавления 80° С, плотность 0,85 г см [2], хорошо растворяется в диэтиловом эфире и в холодном н-геитане. Изотактический полипропилен по своим свойствам выгодно отличается от атактического в частности, он обладает более высоким модулем упругости, большей плотностью (0,90—0,91 г см ), высокой температурой плавления (165—170° С) [5], лучшей стойкостью к действию химических реагентов и т. п. В отличие от атактического полимера он растворим лишь в некоторых органических растворителях (тетралине, декалине, ксилоле, толуоле), причем только при температурах выше 100° С. Стереоблок-полимер иолиироиилена прн исследованиях с помощью рентгеновских лучей обнаруживает определенную кристалличность, которая не может быть такой же полной, как у чисто изотактических фракций, поскольку атактические участки вызывают нарушения в кристаллической решетке [4]. [c.64]

    По мере повышения степени хлорирования уменьшается содержание кристаллической фракции в полимере. Вследствие деструкции вязкость растворов хлорированных полимеров пропилена снижается прямо пропорционально содержанию хлора. Температура размягчения, как и в случае полиэтилена [79], сначала падает, а затем линейно повышается, причем постепенно возрастает плотность хлорированного полипропилена (рис. 6.4). Подобно всем хлорированным полимерам хлорированный полипропилен легко отщепляет газообразный хлористый водород так, полипропилен с содержанием хлора 607о отщепляет его уже при 108—123°С. [c.134]

    В промч ти К.-и. п. осуществляют как крупнотоннажные непрерывные процессы. Полимеризацию чаще всего проводят в среде орг. р-рителя (см. Полимеризация в растворе), реже-методом газофазной полимеризации. В связи с высокой чувствительностью металлоорг. катализаторов к каталитич. ядам требуется высокая степень очистки мономеров и р-рителей от следов О2, Н2О и др. В промч ти К.-и. п. производят ок. /з общего кол-ва полиэтилена (полиэтилен высокой плотности и т. наз. линейный полиэтилен низкой плотности, т.е. сополимер этилена с небольшим кол-вом а-бутена), полипропилен, этилен-пропиленовые каучуки, высшие полиолефины, 1/ис-1,4-полиизопрен и 1/ис-1,4-полибутадиен (см. Изопреновые каучуки синтетические, Бутадиеновые каучуки). Суммарное мировое произ-во полимеров методами К.-и. п. измеряется многими млн. т. [c.465]

    Для цилиндрических аппаратов удельное орошение принимается в пределах 0,5...0,7 л/м Опорные тарелки обычно выполняются щелевыми с шириной щелей в пределах 4...6 мм. Относительное свободное сечение тарелки для слабослипающихся неволокнистых пылей принимаютоколо 0,4 м7м-, а для смолистых веществ и пылей, способных образовывать отложения, увеличивают до 0,6 м /мг. С целью уменьшения сопротивления слоя используют насадки шаровой или овальной формы. Наилучший материал насадок - полиолефины, (полиэтилен, полипропилен), ввиду невысокой насыпной плотности. Кроме того, они достаточно легко очищаются. Рекомендуемая насыпная плотность насадки составляет 200...300 кг/м Возможно также использование стеклянных шариков, вспученных материалов без поверхностных пор. Оптимальный диаметр шаров около 20 мм. Диаметр аппарата в десять или более раз должен превышать диаметр элементов насадки. [c.209]

    Г азопроницаемость смесей полиэтилена низкой плотности с полиэтиленом высокой плотности, полиизобутиленом и полипропиленом- по отношению к СО2, N2, О2, Не и парам воды была иссле- дована Ито Введение полиэтилена высокой плотности в полиэтилен низкой плотности способ-)СТвовало снижению коэффициентов Р, О п а. Смеси полиэтилена низкой плотности с полипропиленом характеризовались наличием максимума проницаемости Р, который отвечал, по мнению автора, максимальной гетерогенности смеси. Известно, что введение полярных полимеров невысокой молекулярной массы в резины, например феноло-формальдегидной или инденкумароновой смол, способствует значительному снижению газопроницаемости резин на основе СКС-30 и НК . Выражения для коэффициентов проницаемости смесей эластомеров в зависимости от значений Р исходных эластомеров хорошо согласуются с экспериментальными данными [c.179]

    В качестве объектов исследования были выбраны полиэтилен низкой плотности (ПЭВД), индекс расплава 2,0 г/10 ми характеристическая вязкость [т)] при 75 °С в о-ксилоле 0,8, М2=25,0- 10 изотактический полипропилен (ПП), остаток по е экстракции -гептаном 96%, [г)] при 85°С в о-ксилоле 1,87 М2= 1,65-10 поликапроамид (ПА), при 25°С в лi-кpeзoлe 1,22 2=22,4-10 и смешанный полиамид АК 60/40 (ПА АК 60/40), [т]] при 25 °С в л4-крезоле 1,20, ЛГ2= 19,2-10 . [c.152]


Смотреть страницы где упоминается термин Полипропилен плотность: [c.39]    [c.392]    [c.358]    [c.192]    [c.193]    [c.191]    [c.215]    [c.66]    [c.622]    [c.215]    [c.175]    [c.293]    [c.173]    [c.447]    [c.474]    [c.76]    [c.478]    [c.220]    [c.233]    [c.217]    [c.197]   
Полиолефиновые волокна (1966) -- [ c.46 , c.48 , c.164 , c.165 ]




ПОИСК





Смотрите так же термины и статьи:

Полипропилен



© 2025 chem21.info Реклама на сайте