Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипропилен хлорирование

    С увеличением содержания хлора в полипропилене возрастают растворимость, хрупкость и плотность полиме,ра и уменьшается вязкость его растворов. Уменьшение вязкости показывает, что ири хлорировании изотактического полипропилена происходит деструкция его макромолекул. Температура плавления хлорированных полипропиленов, по мере увеличения содержания в них хлора, вначале снижается (по сравнению с температурой размягчения нехлорированного изотактического полипропилена), а затем вновь возрастает  [c.222]


    Важное значение имеет химическая стойкость полипропилена [116]. При комнатной температуре он устойчив в водных растворах солей, мыл и моющих средств, разбавленных и концентрированных минеральных кислотах и щелочах, растворах перекисей, растительных и минеральных маслах, в спиртах. В углеводородах и хлорированных углеводородах полипропилен набухает, в сильно концентрированных окислителях (например, олеум, дымящая азотная кислота, бромистый водород, отбеливатели) — разлагается. Раствор иода и перманганата калия окрашивает полипропилен. [c.301]

    Полипропилен имеет высокие физико-механические и диэлектрические показатели (молекулярная масса 60 000—200 000, темп, пл. 164—170 °С, плотность 920 кг/м ). Он стоек к действию кислот, оснований и масел даже при повышенной температуре. При обычной температуре он ни в чем не растворяется, при температуре выше 80 °С растворяется в ароматических углеводородах и хлорированных парафинах. [c.305]

    Хлорированный полипропилен Исследование инфракрасного спектра [147] [c.143]

    ВдоХ —при об. т. в растворах с концентрацией до 93% (полиэтилен, полипропилен, полистирол, поливинилиденхлорид, поливинилхлорид, хлорированные полиэфиры). [c.407]

    ПОЛИПРОПИЛЕН ХЛОРИРОВАННЫЙ, см. Полио.кфи-ны хлорированные. [c.20]

    Стереорегулярный полипропилен (стр. 454) — кристаллически полимер с очень высокими физико-механическими показателями и хорошими диэлектрическими свойствами. Температура плавления полипропилена значительно выше, чем у полиэтилена 164—170° С, а молекулярная масса 60000—200 000. Полипропилен кислото-и маслостоек даже при повышенных температурах. При обычной температуре он не растворяется ни в одном растворителе, при 80° С растворяется в ароматических углеводородах и хлорированных парафинах. Благодаря исключительным свойствам полипропилен — весьма перспективный полимер. Имеются указания о том, что синтетическое волокно из полипропилена по прочности превосходит все известные природные и синтетические волокна. [c.469]

    Полипропилен отличается высокой температурой плавления (до 170°С), устойчивостью к старению и химической стойкостью к действию воды, неокислительных кислот, щелочей и растворов солей. Однако концентрированная азотная кислота при повышенной температуре разрушает его. При комнатной температуре полипропилен не растворяется в органических растворителях, при температуре выше 80 °С он растворяется в ароматических и хлорированных углеводородах. [c.124]


    Продуктами термоокислительной деструкции полипропилена являются ацетальдегид, формальдегид, окись углерода, углекислота [68, 69]. Высокомолекулярная стереорегулярная фракция полипропилена нерастворима ниже 80, выше этой температуры она растворяется в толуоле, ксилоле, хлорированных углеводородах. Содержание высокомолекулярной стереорегулярной фракции в техническом полипропилене колеблется от 80 до 93%. Наряду со стереорегулярной фракцией полимер содержит чисто аморфную фракцию (5—9%), растворимую в эфире. Остальное количество полимера [c.788]

    Изготовление диафрагм с улучшенными характеристиками предложено в [103, 104]. Для этого необходимо в резиновую смесь на основе бутилкаучука вводить олигоэфиракрилат МГФ-9, а вместо хлоропренового каучука ПВХ. Полученные диафрагмы обладали более высокими эксплуатационными характеристиками. В другой работе этих авторов [105] получены аналогичные данные при введении в диафрагменную смесь наряду с МГФ-9 хлорированных полиэтиленов или хлорированных полипропиленов. Как и в первом случае, при этом исключается необходимость введения в состав диафрагменных резин поли-хлоропренового каучука. [c.132]

    Ароматические, алифатические и хлорированные углеводороды вызывают при температурах 25-30 °С лишь небольшое набухание полимера. Органические кислоты и галогены абсорбируются полипропиленом и медленно диффундируют через него. Для полипропилена характерна высокая стойкость к многократным изгибам и истиранию. [c.25]

    Полипропилен является кристаллизующимся полимером, содержание кристаллической фазы составляет 73-75 %. Так же, как и остальные полиолефины, ПП неполярный полимер. Он растворяется только при повышенных температурах в сильных растворителях хлорированных, ароматических углеродах, стоек к кислотам и щелочам, отдельные марки допущены к контакту с пищевыми продуктами и для производства изделий медико-биологического назначения. [c.34]

    Полипропилен отличается высокой степенью кристалличности, что обусловливает более высокие по сравнению с полиэтиленом термостойкость и твердость Полипропилен водостоек и превосходит полиэтилен по стойкости к воздействию кислот и щелочей Растворяется при 80 °С только в ароматических и хлорированных углеводородах, образуя малоконцентрированные растворы, поэтому имеет ограниченное применение — только в производстве порошковых красок [c.148]

    Кренцель, Топчиев и Ильина [525, 526] получили хлорированный и сульфохлорированный полипропилен, которые представляют большой интерес как новые полимерные материалы. [c.83]

    Полипропилен, как и полиэтилен, обладает высокой химической стойкостью. Выдерживает продолжительный контакт с концентрированными кислотами (в том числе 94% азотной и 98% серной кислотами), не разрушается при действии высококонцентрированных растворов солей даже при высокой температуре. Углеводороды и растительные масла практически не действуют на полипропилен. При продолжительном хранении полипропилена в бензоле, ацетоне, четыреххлористом углероде при обычной температуре свойства его заметно не изменяются. Ароматические и хлорированные углеводороды растворяют полипропилен лишь при температуре свыше 80° С. [c.149]

    Непластифицированный поливинилхлорид, полиэтилен высокой плотности, полипропилен, АБС-сополимеры, сополимер акрилового эфира, стирола и акрилонитрила Хлорированный поливинилхлорид, полибутен, сшитый полиэтилен, полипропилен, полиэфирные и эпоксидные стеклопластики Сшитый полиэтилен высокой плотности, полиэтилен высокой плотности, сополимеры пропилена, полибутен Непластифицированный поливинилхлорид, полиэтилен высокой плотности, полиэфирные стеклопластики Непластифицированный поливинилхлорид, полиэтилен высокой и низкой плотности, полиэфирные стеклопластики [c.224]

    В странах Западной Европы происходит интенсивный процесс замены медных труб пластмассовыми в системах горячего водоснабжения. Наряду с хлорированным поливинилхлоридом и полибутеном для данных целей используют сшитый полиэтилен и полипропилен (в тыс. т)  [c.225]

    Новые пленкообразующие. Каждый год появляются новые синтетические пленкообразующие, например хлорированная полиэфирная смола, обладающая высокой химической инертностью при повышенной температуре и хорошей адгезией к металлам, хлорированный полипропилен, являющийся тепло- и огнестойким продуктом, и целый ряд других. К числу сравнительно новых достижений в области использования синтетических смол для защитных покрытий относится применение в качестве связующих феноксисмол. Эти полимеры сочетают в себе свойства как термопластичных, так и термореактивных смол. Они могут использоваться в сочетании с мочевинными, меламиновыми, эпоксидными и фенольными смолами. Эластичность и стойкость ж удару, а также высокая стойкость к воде и растворам солей позволяет применять покрытия на основе феноксисмол для разнообразных промышленных целей. Завоевали признание моющиеся грунты на этих смолах, пигментированные хромовыми кронами и содержащие фосфорную кислоту. С успехом фенокси композиции могут использоваться и для декоративных целей для прозрачных покрытий по дереву, металлу, пластмассам. Перспективным является применение этих смол в качестве эластичного модификатора термореактивных смол, таких как фенольные и эпоксидные. [c.432]


    Хлорированные полимеры выпускают многих марок они имеют разнообразное применение. К ним относятся хлоркаучук, хлорированные полиэтилен, полипропилен и поливинилхлорид с содержанием хлора до 70%. Введение хлора обычно повышает эластичность полимера и увеличивает его адгезию к различным материалам. [c.105]

    Полипропилен стоек к действию воды, неокислительных кислот, щелочей, растворов солей даже при повышенных температурах. Только сильно окислительные среды, например концентрированная азотная кислота при повышенной температуре, разрушает его. Полипропилен нерастворим в органических растворителях при комнатной температуре при нагревании до 80 °С и выше он растворяется в ароматических (бензоле, толуоле), а также хлорированных углеводородах. [c.100]

    До последнего времени удельная доля пленкообразующих на основе карбоцепных полимеров в лакокрасочной промышленности была невысокой. Разработка новых типов лакокрасочных материалов на основе полиолефинов (водо-, органо- и аэродисперсии), а также принципиально новых методов нанесения покрытий сильно расширила возможности использования рассматриваемых полимеров в качестве пленкообразующих. Полимеры на основе карбоцепных полимеров выпускаются в ряде подотраслей химической промышленности, в том числе промышленностью пластических масс, нефтеперерабатывающей и др., а лакокрасочная промышленность чаще всего является лишь их потребителем. Это в первую очередь относится к таким многотоннажным полимерам, как полиэтилен, полипропилен, хлорированные полиолефины, нефтеполимерные смолы и инден-кумароновые олигомеры. Выпуск полимеров, необходимых для производства полиакрилатных и поливинилацетатных лакокрасочных материалов, обеспечивает сама пакокрасоочная промышленность. [c.319]

    Полипропилен имеет более высокую температуру плавления, чем полиэтилен, однако значительно уступает полиэтилену по м,ррозостойкости. Он является более жестким материалом, чем полиэтилен. Полипропилен нерастворим в органических растворителях при комнатной температуре. При нагревании до 80 °С и выше он начинает растворяться В ароматических (бензоде, толуоле) и хлорирован- [c.12]

    Во-первых, оказалось, что не все полимерные продукты способны диспергироваться в тонкие порошки при УДВ. Достаточно хорошо измельчаются любые марки полиэтилена высокого давления (ПЭВД), хлорированный полиэтилен, некоторые сополимеры этилена, в частности, с винилацетатом (ВА) при содержании В А менее 20% мае. (Сэвилен), высокоиндексный полипропилен (ВИПП), получаемый механохимической деградацией макромолекул стереорегулярного полипропилена в присутствии пероксида. [c.262]

    Этилен СНа = СН2, пропилеи СНз—СН = СНг, бутилен СНз—СНг—СН = СНг, бутадиен (дивинил) СНг = СН—СН = СН2, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. Этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пишевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. с. 205) синтетический спирт из этилена в несколько раз дешевле пишевого и требует меньших затрат труда. Синтетический спирт широко применяется в различных отраслях промышленности для получения синтетического каучука, целлулоида, ацеталь-дегида, уксусной кислоты, искусственного шелка, лекарственных соединений, душистых веществ, бездымного пороха, бутадиена, инсектицидов, в качестве растворителя и т. п. [c.169]

    Средний молекулярный вес стандартных образцов полипропилена достигает 150 ООО. Предел прочности нри растяжении такого полимера равен 330—360 Л г/г.)г, удлинение при разрыве достигает 400—800%. Как и полиэтилен, иолипропилен обладает превосходными диэлектрическими свойствами и устойчив к действию кислот и щелочей. При комнатной температуре стереорегулярный полипропилен не растворим в органических растворителях, при температуре выше 80 растворим в бензоле, толуоле, хлорированных углеводородах. [c.216]

    Хлорированные полипропилены, содержащие более 45% хлора, пе имегот области высокоэластического состояния и сразу переходят VI3 стеклообразного в вязкотекучее состояние. Хлорированный полипропилен отщепляет НСЛ при 100—120°. При введении стабилизаторов термическая стаби.чьность хлорированного продукта увеличивается. [c.222]

    По мере повышения степени хлорирования уменьшается содержание кристаллической фракции в полимере. Вследствие деструкции вязкость растворов хлорированных полимеров пропилена снижается прямо пропорционально содержанию хлора. Температура размягчения, как и в случае полиэтилена [79], сначала падает, а затем линейно повышается, причем постепенно возрастает плотность хлорированного полипропилена (рис. 6.4). Подобно всем хлорированным полимерам хлорированный полипропилен легко отщепляет газообразный хлористый водород так, полипропилен с содержанием хлора 607о отщепляет его уже при 108—123°С. [c.134]

    Окислы двухвалентных металлов (2п0, Mg0, РЬО) реагируют с хлорированным полипропиленом (наиболее предпочтителен полимер с молекулярным весом >20 000 и содержанием хлора >20%) с образованием эластомеров, обладающих прекрасной озоностой-костью. Эту реакцию часто проводят в присутствии меркапто-бензтиазола [72, 78, 80, 81]. Пленки, волокна и формованные изделия из полипропилена можно подвергнуть действию хлора так, чтобы хлорирование проходило лишь в тонком поверхностном слое. Благодаря повышенной полярности хлорированной поверхности улучшается ее способность окрашиваться и воспринимать печать, чернила, лаки, клеи, фотоэмульсию и т. п. [82—85]. Хлорированный полипропилен размягчается легче, чем нехлорированный (рис. 6,4), вследствие чего улучшается его свариваемость. Раствор низкомолекулярного хлорированного полипропилена в смеси с красителями образует несмываемые чернила [86]. Хлорированный полипропилен в чистом виде или в смеси с немодифицированным полипропиленом может быть рекомендован для склеивания металлов, бумаги, стекла, а также поливинилхлорида и поливинилиден-хлорида [87]. Пленки из хлорированного полипропилена применяются в качестве проницаемых мембран [88] с высокой удельной ударной вязкостью при изгибе [69]. Большой интерес представляет галогенирование твердого полипропилена в целях удаления [c.135]

    По своим свойствам хлорсульфонированный полипропилен аналогичен хлорированному. Вязкость хлорсульфонированного полипропилена в растворе, однако, ниже вязкости хлорированного полипропилена с таким же содержанием хлора и зависит от общего содержания хлора [79]. Хлорсульфонированный полимер пропилена полностью растворим в хлорированных и ароматических углеводородах, частично — в сложных эфирах, кетонах, не растворяется в кислотах и спиртах. При температуре выше 110° С н под действием ультрафиолетового излучения полимер претерпевает деструкцию, которая сопровождается отщеплением хлористого водорода и сернистого ангидрида. Отсюда понятна необходимость стабилизации хлорсульфонированного полипропилена, например стабилизаторами, применяемыми для защиты поливинилхлорида. [c.137]

    В отличие от полиэтилена, у которого для разрушения кристаллической структуры и образования эластомера требуется довольно глубокое хлорирование (25—40%), при аморфизации полипропилена достаточно хлорсульфонирования до содержания 1°/о. Рекомендуется применять полипропилен с молекулярным весом более 5000, содержанием кристаллической фракции не более 10% и содержанием хлора до 20%. При вулканизации с помощью окислов двухвалентных или многовалентных металлов реакции проходят по схеме  [c.138]

    Хлорированный полипропилен, содержащий 45% хлора, не имее области высокоэластического состояния. [c.165]

    Как уже упоминалось выше, для изготовления невысыхающих герметиков используются или полностью насыщенные или с низкой непредельностью полимеры типа бутилкаучука, полнизо-бутилена, этилен-пропиленового каучука, хлорированного, бутилкаучука различной молекулярной массы — от 10 10 до 200-10 в сочетании с полистиролом, полипропиленом и полиэтиленом высокого и низкого давления и такими же полимерами более низкой молекулярной массы (по 300) [1, 7, 16—21]. Эти полимеры хорошо перерабатываются на вальцах и другом оборудовании резиновой промышленности, а отсутствие двойных связей или их малое содержание предопределяет высокую химическую стойкость герметиков, атмосферостойкость и стойкость к старению. [c.141]

    Эффективность Р. с. может быть в 5—10 раз увеличена введением сенсибилизаторов. Так, добавление к полимеру полифункциональных мономеров (напр., аллил-акрилата, аллилметакрилата, дивинилбензола, триал-лилцианурата) сенсибилизирует Р. с. как сшивающихся (полиэтилен, полипропилен, полиамид-6,6), так и дест-руктирующих (полиизобутилеп, полиметилметакрилат, ноливинилацетат, ацетилцеллюлоза) полимеров вследствие образования дополнительных связей ирхг раскрытии ненасыщенных связей молекул сенсибилизатора. Др. сенсибилизаторы, напр, хлорированные углеводороды или перекиси, при облучении дают свободные радикалы. [c.128]

    Хлорированный полипропилен парлон Р 20 Хлорированный полифенил ароклор 5660. Хлорированный полифенил ароклор 1254. Толуол. ................  [c.58]

    Этилен СН2=СН.2, пропилен СН —СН=СН,, бутилен СНз—СНз—СН=СН-2, бутадиен (дивинил) СН.,=СН—СН=СНз, будучи очень реакционноспособными соединениями, играют очень важную роль в промышленности органического синтеза. Из шoгo-численных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. В настоящее время этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пищевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. стр. 556) 1 т этилена позволяет сэкономить более [c.507]

    Обозначения ХПВХ — хлорированный ПВХ ПЭНД — полиэтилен низкого давления ПП — полипропилен [c.36]


Смотреть страницы где упоминается термин Полипропилен хлорирование: [c.15]    [c.111]    [c.221]    [c.138]    [c.18]    [c.9]    [c.9]    [c.128]    [c.735]    [c.261]    [c.398]   
Химические реакции полимеров том 2 (1967) -- [ c.75 , c.233 ]

Основы химии полимеров (1974) -- [ c.574 ]

Химия синтетических полимеров Издание 3 (1971) -- [ c.264 ]

Химия сантехнических полимеров Издание 2 (1964) -- [ c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Полипропилен



© 2025 chem21.info Реклама на сайте