Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эфиры акриловой кислоты полимеризация, влияние кислорода

    Этот механизм распада перекиси бензоила установлен нами в присутствии винилацетата, хлористого винила, стирола, эфиров акриловых кислот и других виниловых соединений. Таким образом, активирующая роль перекисей при процессах полимеризации сводится, по нашему мнению, не только к распаду на свободные радикалы, но и к выделению атомарного кислорода и его дальнейшему влиянию. Отсутствие активирующего влияния перекисей на превращения винилалкиловых эфиров находится в полном соответствии с их устойчивостью по отношению к кислороду воздуха. В процессах полимеризации атомарному кислороду, образующемуся при распаде перекисей, можно придать, при желании, роль свободного радикала. [c.220]


    Возможность полимеризации иод влиянием тепла установлена и для метилового эфира метакриловой кислоты. При 70° образуется 0,0081% полимера в час, степень пЛшмеризации такого полимера составляет 25 ООО. При 130° скорость полимеризации возрастает до 0, 25% в час, но степень полимеризации снижается до 6500. Еще более ничтожна скорость термической активации бутадиена, изопрена, акриловой кислоты. Наблюдаемую полимеризацию нельзя полностью приписать только действию тепла, так как даже следы кислорода, оставшиеся в системе, могут способствовать инициированию этой реакции. [c.93]

    Из таблицы видно, что на константу передачи цепи существенное влияние оказывает как строение макрорадикала, так и строение алкил (арил)фосфина. Полистирольные радикалы более реакционноспособны в реакции с фосфинами, чем полиметилметакрилатные, и этим объягаяется возможность выделения теломеров при реакции фосфинов с акрилатами. Фосфины более реакционноспособны по отношению к полиметилметакрилатному радикалу, чем к-бутилмер-каптан. В алифатическом ряду заместитель мало влияет на реакционную способность. При переходе от алкилфосфинов к фенилфосфину константа передачи цепи на фосфин возрастает почти в 10 раз, что связано с возможностью образования более стабильных (за счет участия в распределении электронной плотности ароматического ядра) фенилфосфинильных радикалов. Этим объясняется легкость присоединения фенилфосфина к различным непредельным соединениям, которую наблюдали Б. А. Арбузов с сотрудниками [14]. Реакция фенилфосфина с эфирами акриловой и метакриловой кислот, нитрилом акриловой кислоты идет без инициатора при 120—130° С. При указанных температурах чистый метилметакрилат подвергается термической полимеризации с ощутимой скоростью [13]. Кроме того, источником радикалов могут быть пероксиды, образующиеся при взаимодействии растворенного в мономере кислорода сего молекулами, или перокси-радикалы со структурой СН2(Х)СН—О—О.  [c.27]

    Основной метод синтеза акриловых блок-сополимеров состоит в использовании так называемого гель-эффекта [531, заключающегося в том, что образовавшийся полимер оказывает инициирующее действие на последующую полимеризацию, вызывая в конечном счете бурное ускорение ее. И даже после окончания процесса образовавшийся полимер содержит еще настолько активные радикалы, что они способны инициировать полимеризацию вновь введенного мономера с образованием блок-сополимера. Для этого необходимо, однако, исключить влияние посторонних веществ, в частности кислорода воздуха, легко реагирующих со свободными радикалами. При проведении блок-сополимеризации предпочтение отдают мономерам, алкил-замещенным у а-углеродного атома (например, эфирам метакриловой кислоты, метакрилонитрилу и т. п.), так как при этом исключена возможность переноса цепи путем отрыва атома водорода, находящегося в указанном положении. [c.103]


    Ингибирующее влияние кислорода на полимеризацию метак-риловой и акриловой кислот отмечено в работе [206]. Для большого числа мономеров установлено, что в период ингибирования происходит сополимеризация мономера с кислородом с образованием полимерных пероксидов, строение которых отвечает общей формуле [—М —00—]х. где М —мономерное звено, п [206, 207]. Молекулярная масса пероксида составляет 1800. Выше 40 °С пероксид метилметакрилата разлагается с выделением формальдегида и метилового эфира пировиноград-ной кислоты. [c.199]

    Абсолютно чистая акриловая кислота, выделенная из реакционной смеси с помощью эфира, тщательно очищенного от перекисей, является относительно устойчивой. Раствор такой кислоты в воде, не содержащей растворенный кислород, не изменяется при длительном нагревании в атмосфере азота или углекислого газа [1973]. При пагревапии чистой кислоты до 100° скорость полимеризации постепенно возрастает, и при температуре свыше 100° полимеризация протекает весьма быстро [1972, 1976]. Очищенная обычным способом акриловая кислота, если она не стабилизирована, поли-меризуется уже в процессе храпения, особенно па свету. Отсюда видно, что акриловая кислота нолимеризуется нод влиянием свободных радикалов. Эта нолимеризация похожа на полимеризацию хлористого винила (ср. стр. 261), по от полимеризации стирола и других мономеров этого типа отличается тем, что ее не вызывают пи комплексообразующие соли, как, например, хлорное олово (см. стр. 407), ни флоридин [1821]. Очень быстро протекает полимеризация под влиянием обычных инициаторов этого процесса, папример перекиси водорода [1972,1977, 1978], нерекиси бензоила [J979] и др. Полимеризация является сильно экзотермичной реакцией и, согласно Штаудингеру, протекает так, что к активированной молекуле присоединяются последовательно следующие молекулы мономерного соединения до тех пор, пока пе образуется макромолекула, нерастворимая в мономере, которая выделяется из раствора. Па этом рост макромолекулы оканчивается, и полимеризация останавливается [1821]. При этом наблюдались некоторые особенности, заключающиеся в том, что различные образцы акриловой кислоты, полученные одним и тем же способом и в одинаковых условиях, полимери- [c.413]

    Благодаря своему практическому значению полимеризация акрилатов и метакрилатов явилась предметом многих исследований [1994, 2142, 2204— 2212]. Результаты этих исследований коротко можно сформулировать следующим образом. При обычной температуре самопроизвольная полимеризация протекает в незначительной степени [2011, 2213]. Она приводит обычно к образованию низкомолекулярных жидких полимеров с малой вязкостью [2214], и ее результаты часто бывают невоспроизводимыми [2213]. Нагревание значительно ускоряет процесс полимеризации благоприятное влияние на полимеризацию метакрилатов оказывает также повышение давления. Однако чистые не содержащие кислорода эфиры акриловой и метакриловой кислоты устойчивы и не изменяются даже при длительном нагревании до 100 в атмосфере инертного газа [2142, 2207]. Следы кислорода вызывают быструю полимеризацию, идущую с выделением тепла, которая моншт даже привести к взрыву. В связи с этим стоит упомянуть, что метилакрилат пе полимеризуется, если его в течение нескольких дней нагревать до 100° в никелевом сосуде однако если перед нагреванием прибавить к мономеру стеклянный порошок, то эфир в течение короткого времени превращается в полимер [2206]. Пе меньший интерес представляет обнаруженное Штаудингером [2204] влияние кислорода на фотонолимеризацию метилакрилата. Точно так же, как и у винилацетата, фотополимеризация метилакрилата протекает в атмосфере азота или углекислого газа быстрее, чем на воздухе (ср. стр. 335). По механизму и конечным результатам полимеризация акрилата и метакрилата подобна полимеризации винилацетата, стирола и бутадиена. Образующиеся полиакрилаты и полиметакрилаты также растворимы в исход- [c.458]

    Одно из основных направлений предс1авляет собою исследование гомо-полимеризации и сополимеризации мономеров, являющихся сернистыми аналогами таких широко известных виниловых мономеров, как простые виниловые эфиры, эфиры акриловых и метакриловых кислот и др. Авторы большинства работ этого направления ставят перед собой задачу исследовать влияние замены атома кислорода атомом серы на способность мономеров к полимеризации. [c.173]

    Эфиры акриловой и метакриловой кислот полимеризуются под влиянием кислорода, при облучении и при нагревании в-присутствии инициаторов радикально-цепной или ионной полимеризации. Обычно реакцию полимеризации эфиров акриловой и метакриловой кислот проводят в среде мономера, инициируя ее органическими перекисями. Реже этот процесс проводят суспензионным или эмульсионным способом в водной среде. [c.397]



Методы высокомолекулярной органической химии Т 1 Общие методы синтеза высокомолекулярных соединений (1953) -- [ c.245 ]




ПОИСК





Смотрите так же термины и статьи:

Акриловая кислота

Акриловая кислота полимеризация

Акриловая кислота, полимеризаци

Акриловая кислота, эфиры

Акриловая полимеризация

Полимеризация влияние

Полимеризация кислот

Полимеризация под влиянием кислот



© 2025 chem21.info Реклама на сайте