Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микроорганизмы, влияние на процессы коррозии

    Изучалось влияние аэробной микрофлоры в речной воде на скорость коррозии [7]. Появление нового деполяризатора — микроорганизмов — стимулирует процесс коррозии в связи с накоплением ионов Н 0+ в продуктах метаболизма  [c.28]

    ВЛИЯНИЕ МИКРООРГАНИЗМОВ НА ПРОЦЕССЫ КОРРОЗИИ [c.491]

    На коррозионную активность почвы влияет наличие бактерий. В чем же состоит ускоряющее действие, оказываемое микроорганизмами на протекание коррозионных процессов В анаэробных условиях процесс коррозии заторможен из-за отсутствия катодных деполяризаторов. Незначительные количества атомарного водорода, образующегося в нейтральных грунтах на катодных участках поверхности труб, ни тем более связанный в сульфатах кислород не оказывают заметного влияния на скорость катодных процессов. При наличии в почве сульфатвосстанавливающих бактерий, рост которых связан с реакцией восстановления ионов серы водородом, в результате биологического процесса образуется свободный кислород, используемый микроорганизмами для дыхания и участвующий в катодной реакции в качестве деполяризатора. Образующиеся при этом ионы восстановленной серы 8 вызывают снижение pH среды, что благоприятствует протеканию катодного процесса с водородной деполяризацией, а выпадение в осадок нерастворимого сернистого железа активизирует процесс анодного растворения трубной стали. Поскольку этот процесс происходит без торможения, он может продолжаться непрерывно. При величине pH > 9 сульфат-восстанавливающие бактерии погибают, поэтому эффективным методом борьбы с ними является защелачивание среды. [c.16]


    Биоповреждения — неизбежное следствие важнейшей роли микроорганизмов в круговороте элементов в биосфере. Проявления биоповреждений весьма многообразны от порчи пищевых продуктов до загрязнения смазочных масел и топливных систем, разрушения бетона и развития электрохимических процессов коррозии под влиянием микроорганизмов. Биотехнология поможет создать новые методы борьбы с биоповреждениями благодаря более глубокому пониманию лежащих в их основе процессов. На этой базе могут быть созданы новые биотехнологические процессы. Примером такого рода служит использование ферментов в пищевой промышленности. [c.26]

    Наиболее характерные случаи ускорения процесса коррозии железа в почве относятся почти исключительно к коррозии в анаэробных условиях, т. е. при сильно затрудненном или вовсе исключенном доступе кислорода воздуха в зону коррозии. Казалось бы, что развитие коррозионного процесса при отсутствии кислорода, т. е. процесса анаэробной бактериологической коррозии, уже невозможно связывать с электрохимическим механизмом коррозии, так как для протекания- катодного деполяризующего процесса в нейтральных почвах необходим кислород. Однако такое предположение неправильно. На наш взгляд, наиболее обоснованным на сегодня является объяснение ускоряющего действия микроорганизмов на коррозию железа в почве их влиянием на протекание именно электрохимических процессов коррозии железа. [c.145]

    Непосредственными наблюдениями некоторые исследователи [52] показали, что скорость коррозии железа уменьшается с глубиной заложения железных образцов в почву в связи с ограничением аэрации на больших глубинах. Было установлено даже, что в кислых почвах со значением pH 4,4 скорость коррозии не зависит от кислотности почвы и целиком определяется скоростью притока кислорода [53]. По наблюдениям Цикермана [14] более коррозионно-активными чаще оказываются плохо аэрируемые грунты, однако имеется ряд примеров, когда коррозия была минимальной как раз в плохо аэрируемых тяжелых грунтах. Такое отсутствие четкой зависимости между кислородной проницаемостью, электросопротивлением, а также другими физическими свойствами и агрессивностью почв Логен [6] пытается объяснить деятельностью микроорганизмов. Это объяснение представляется, однако, недостаточно обоснованным. Кротовым на основании лабораторных экспериментов показано [17] что интенсивность процессов коррозии в почве определяется главным образом скоростью поступления воздуха. Отсюда очевидно существование диаметрально противоположных взглядов на влияние воздухопроницаемости иа скорость коррозии в почве, что будет ниже разъяснено. [c.382]


    Различие в природе электролитов может создать разность электродных потенциалов металлов в 0,3 в. Имеются указания, что различие в степени аэрации вызывает еще большую э. д. с., равную 0,9 в. Все эти причины, а в ряде случаев действие находящихся в грунте микроорганизмов способствуют разрушению подземных металлических сооружений. Развитию коррозии подземных сооружений также способствует наличие на их поверхности прокатной окалины. В отдельных случаях разность потенциалов между окалиной и основным металлом достигает 0,45 в. На процессы подземной коррозии оказывают влияние самые разнообразные факторы, к числу которых относятся, помимо указанных выше, температура, электропроводность, воздухопроницаемость грунта, состав грунтовых вод и др. Поэтому очень трудно выделить и изучить влияние каждого фактора в отдельности. [c.184]

    Известное влияние на процессы подземной коррозии металлов оказывают микроорганизмы, продукты жизнедеятельности которых могут в значительной степени ускорить разрушение металлических конструкций. [c.189]

    Расширение применения ингибиторов коррозии, старения и биоповреждений, в том числе обладающих значительным физиологическим действием на животных и человека (детергенты, производные бензола и т. п.), ведет к накоплению их в воздухе, воде, земле,, и воздействию на высшие организмы. Они могут оказывать и косвенное влияние. Накапливаясь в водоемах до концентраций 0,001... г/л, такие вещества тормозят процессы биохимического потребления микроорганизмами кислорода. Изменяются сроки выживания сапрофитных микроорганизмов. Нарушается равновесие самоочищения воды от органических загрязнений, создаются условия развития патогенных бактерий [43, с. 277]. [c.109]

    В море, а также частично и в открытой атмосфере сказывается влияние продуктов жизнедеятельности микроорганизмов они снижают pH и тем самым усиливают процесс разрушения металла в щелях. Скорость коррозии в щелях зависит от состояния поверхности металлов. Наличие органики в щелях уменьшает концентрацию кислорода, необходимого для пассивации металла. Наиболее сильному разрушению при щелевой коррозии подвергаются металлы, пассивное состояние которых наиболее сильно зависит от влияния окислителей (к таким металлам относятся в основном нержавеющие стали и алюминиевые сплавы [89]). [c.87]

    При рассмотрении микробиологической коррозии выделяют три процесса 1) влияние микроорганизмов на концентрацию кислорода, 2) удаление коррозионных продуктов, 3) изменение состава химической среды на поверхности раздела металл—раствор, которое сказывается на ходе коррозионных процессов. [c.19]

    В следующей главе рассмотрено влияние микроорганизмов на разрушение металла в морской воде. Обсуждаются эксперименты в таких средах, где важным фактором является наличие на поверхности металла бактерий. Как продолжительная, так п кратковременная экспозиция конструкционной стали в морской воде пригодной для роста микроорганизмов, показывает, что эти организмы оказывают существенное влияние на коррозионные процессы. Необходимы дальнейшие исследования, направленные на изучение возможности замедления коррозии путем селективного ингибирования деятельности бактерий, усиливающих коррозию. [c.10]

    Очевидно, что, хотя точный механизм микробиологической коррозии пока непонятен, микроорганизмы и их внеклеточные метаболиты оказывают существенное влияние на хорошо изученный в других отношениях процесс электрохимического окисления металла. [c.435]

    Наличие микроорганизмов в водных средах приводит к протеканию особых форм коррозии. Установлено, что микроорганизмы могут влиять как на коррозионную агрессивность среды,, так и непосредственно на коррозионный процесс. Биологическому разрушению подвержены металлические и неметаллические материалы. Специфика действия микроорганизмов заключается в том, что они не только непосредственно разрушают конструкционные материалы, но и оказывают влияние на процессы, обусловливающие химическую, электрохимическую и другие виды коррозии. При этом скорость коррозии может увеличиваться или уменьшаться. В ряде случаев микроорганизмы способны практически полностью подавлять действие ингибиторов кислородной коррозии [34]. [c.56]

    По условиям протекания коррозионного процесса разли чают атмосферную коррозию, протекающую под действием атмосферных, а также влажных газов, газовую, обусловленную взаимодействием металла с различными газами — кислородом, хлором и т, д. — при высоких температурах, коррозию в электролитах, в большинстве случаев протекающую в водных растворах и в зависимости от их состава подразделяющуюся на кислотную, щелочную и солевую. При контакте металлов, имеющих разные стационарные потенциалы в данном электролите, возникает контактная коррозия, а при одновременном воздействии коррозионной среды и постоянных или переменных механических напряжений — коррозия под напряжением. Понижение предела усталости металла, возникающее при одновременном воздействии переменных растягивающих напряжений и коррозионной среды, называют коррозионной усталостью. Кроме того, различают еще коррозионное растрескивание металла,, возникающее при одновременном воздействии коррозионной среды и внешних или внутренних механических растягивающих напряжений. Этот вид разрушений характеризуется образованием транскристаллитных или межкристал-литных трещин. Под влиянием жизнедеятельности микроорганизмов возникает также биокоррозия. Разрушение металла от коррозии при одновременном ударном действии внешней среды называют кавитационной эрозией. Без участия коррозионного воздействия среды эрозия протекает как процесс только механического износа металла. Многие из перечисленных условий возникновения и развития коррозионных процессов встречаются и в пароводяных трактах ТЭС. [c.26]


    Как правило, скорость коррозии возрастает с увеличением глубины залегания металлических конструкций. Однако это возрастание скорости распространяется не на неограниченную глубину. На протекание коррозионного процесса в почве оказывает такл е влияние присутствие микроорганизмов (см. гл. VI, п. 8) и температура, определяемая соответствующими климатическими условиями данного района. [c.120]

    Собственно коррозионный процесс разрушения металла в почве ускоряется под влиянием жизнедеятельности микроорганизмов, анаэробных бактерий. Протяженные металлические конструкции могут находиться в условиях резкого изменения кислородной проницаемости почвы по длине, что приводит к появлению макропар, дополнительному фактору коррозии. [c.50]

    Процессы бактериальной коррозии могут протекать в аэробных и анаэробных условиях. Наиболее характерные случаи усиления коррозии железных конструкций под влиянием жизнедеятельности бактерий наблюдаются в анаэробных условиях. Микроорганизмы могут оказать непосредственное влияние на катодные или анодные электрохимические цроцессы, могут изменить физико-химические свойства грунта и, следовательно, ее агрессивность, а в некоторых случаях могут разрушать защитные покрытия. [c.189]

    Скорость электрохимической коррозии металлов зависит от сложного комплекса физико-химических, тепловых, механических и других факторов, называемых внутренними и внешними. К внутренним факторам, помимо рассмотренных в гл. 1 термодинамической стабильности металлов и их строения, относятся структурные особенности сплавов, способность металлов и сплавов к пассивации, влияние механических напряжений на коррозионный процесс, характер обработки и состояние поверхности сплавов н др. Внешние факторы включают характер агрессивной среды, концентрацию водородных ионов, температуру и скорость движения потока раствора, давление, влияние блуждающих токов, микроорганизмов и др. [c.15]

    Микроорганизмы оказывают значительное влияние на защитные покрытия, и непосредственно на процесс коррозии металла. Наибольшую опасность представляют анаэробные сульфат-редуци-рующие бактерии. Они восстанавливают содержащиеся в грунте сульфаты до сульфид-ионов с выделением кислорода  [c.27]

    Влияние микроорганиз.мов. В природных водах могут иметься всякого рода живые организмы (серо- и железобактерии, водоросли, грибы и т.п.). В благоприятных условиях они образуют на поверхности металла слизеобразные и нитеобразные колонии. Развитие микроорганизмов способствует ускорению коррозии. Наиболее интенсивную деятельность проявляют анаэробные бактерии, которые способны восстанавливать соединения серы (сульфаты) до сульфидов, и аэробные бактерии, окисляющие серу и ее соединения до серной кислоты. Наряду с серобактериями ускорение коррозионных процессов вызьшают также железобактерии. Необходимую для своего развития энергию они получают при окислении ионов двухвалентного железа до трехвалентного. Эти бактерии производят больпгое количество слизи, на которой оседают продукты коррозии и твердые частицы. Образующийся осадок снижает эффективность работы оборудования (например, холодильных установок). [c.68]

    Экстрактивные вещества имеют важное практическое значение. Они играют очень большую роль в жизни дерева участвуют в процессе фотосинтеза (хлорофилл) служат резервными питательными веществами (крахмал, жиры и др.) обладая фунгицидным, бактерицидным и инсектицидным действием, обеспечивают устойчивость к дереворазрушающим фибам, микроорганизмам и насекомым (фенольные соединения) защищают при повреждениях (экссудаты). Экстрактивные вещества в значительной степени определяют цвет и запах древесины. Содержащиеся в некоторых древесных породах красители делают их древесину ценным отделочным материалом (красное дерево и т.п.). При механической переработке древесины экстрактивные вещества могут повлиять на ее обрабатываемость инструментами и привести к их коррозии. Экстрактивные вещества оказывают сильное влияние на проницаемость древесины и тем самым на процессы ее пропитки растворами антисептиков, антипиренов и химических реагентов. [c.501]


Смотреть страницы где упоминается термин Микроорганизмы, влияние на процессы коррозии: [c.179]    [c.387]    [c.434]   
Коррозия металлов Книга 1,2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия влияние

Процессы коррозии



© 2024 chem21.info Реклама на сайте