Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

влияние механических напряжений влияние обработки

    При рассмотрении дефектов литья к слитку и отливке подходят по-разному. Слиток подлежит дальнейшей обработке давлением, а отливка является почти готовым изделием. Такие дефекты отливки, как наросты от размытия формы жидким металлом, вмятины от излишка литейной земли, корка, окалина, поверхностные включения, обнаруживают визуально и удаляют механической обработкой. Несоответствие размеров и конфигурации отливки чертежу вызываются сдвигом частей литейной формы, сдвигом стержней в форме, неполным заполнением формы металлом, короблением отливки под влиянием внутренних напряжений, неправильным расчетом усадки металла при застывании. Эти дефекты обнаруживают при осмотре и обмерах. При большой их величине они являются [c.23]


    Следует особо отметить существенную роль сжимающих остаточных напряжений в повышении коррозионноусталостной прочности деталей (штанг полых и сплошных), упрочненных механической или термической обработкой. Причем благоприятное действие этих напряжений возрастает для деталей, имеющих надрезы закрытые (пустоты, закрытые трещины, включения и т. д.) и открытые (резьбы, проточки, трещины и прочее). При этом надо иметь в виду, что для материалов равнопрочных при растяжении и при сжатии эффективность остаточных напряжений (подразумевается их влияние на усталостную прочность) будет незначительна. Так, например, дробеструйная обработка образцов из чистого железа (Армко) хотя и создает значительные сжимаю- [c.88]

    Исчерпывающих данных по влиянию механической обработки на длительную прочность в воздухе и в активных средах при действии статических сил нет. Можно предполагать, что механическая обработка должна оказывать влияние на хрупкое разрушение (статическую усталость) в воздухе некоторых видов закаленных высокопрочных сталей, а также сталей, предварительно наводороженных при сварке, травлении или гальванизации. Механическая обработка, активирующая поверхность при ее взаимодействии со средой, должна оказывать влияние на статическую усталость стали в некоторых активных средах. В этом случае уже достаточно времени для развития коррозионных или диффузионных процессов, зависящих от состояния поверхности металла, в силу чего состояние поверхности является решающим при длительной прочности, даже при равномерном распределении напряжения по сечению (одноосное растяжение). [c.142]

    Скорость электрохимической коррозии металлов зависит от сложного комплекса физико-химических, тепловых, механических и других факторов, называемых внутренними и внешними. К внутренним факторам, помимо рассмотренных в гл. 1 термодинамической стабильности металлов и их строения, относятся структурные особенности сплавов, способность металлов и сплавов к пассивации, влияние механических напряжений на коррозионный процесс, характер обработки и состояние поверхности сплавов н др. Внешние факторы включают характер агрессивной среды, концентрацию водородных ионов, температуру и скорость движения потока раствора, давление, влияние блуждающих токов, микроорганизмов и др. [c.15]

    Большое практическое значение имеет регулирование процессов кристаллизации под влиянием механических факторов. Например, при нагревании пленки лавсана выше температуры стеклования, но ниже температуры плавления на 20—40°С в ней сразу возникают сферолиты, что делает пленку мутной и хрупкой. Но если одновременно с термической обработкой вытягивать пленку, вместо сферолитов появляются другие кристаллические формы, ориентированные в зависимости от направления силового поля и сообщающие пленке высокую прочность для закрепления приобретенной структуры пленка охлаждается в напряженном состоянии ( закалка ). Таким образом, меняя механический и термический режим формования пластических масс, т. е. изменяя скорость нагревания исходного полимера и скорость охлаждения готового изделия, величину давления, применяя экструзию, литье под давлением, прессование и т. д, можно придать изделиям наиболее благоприятную физическую структуру. Следует еще учесть, что может происходить формирование того или иного типа надмолекулярной структуры в ходе эксплуатации полимерного изделия. [c.444]


    Помимо влияния механической обработки и абразивного износа поверхности образцов большое значение имеют условия изготовления, возникновение анизотропии и замораживание напряжений. [c.20]

    В П1-2 было указано о роли дефектов в металле при его взаимодействии со средой развитие этих дефектов при механической обработке должно способствовать влиянию среды на механические свойства металла и, наоборот, устранение дефектов — препятствовать этому влиянию. В коррозионных средах особое значение приобретают неравномерно распределенные остаточные напряжения, вызываемые механической обработкой, следствием которых является появление на поверхности, соприкасающейся со средой, градиентов напряжения Хорошо известно влияние градиентов напряжения на коррозионную статическую усталость стали. Остаточные напряжения растяжения, вызванные механической обработкой, являются причиной коррозионного растрескивания и, наоборот, появление остаточных напряжений сжатия ликвидирует его. Шероховатость поверхности и наклеп приповерхностного слоя в этих случаях, очевидно, играют меньшую роль, хотя известно, что с увеличением шероховатости возрастают.потери в весе от коррозии и снижается коррозионная стойкость стали, не находящейся под напряжением. [c.142]

    Состояние поверхности вала после механической обработки снижает табличные значения пределов выносливости, полученные для полированных образцов. Совместное влияние механической обработки и концентраторов напряжений может быть оценено по формулам . ,  [c.17]

    Влияние механических факторов на анодное поведение металлов исследовалось многими авторами, но только в последнее вр мя опыты начали ставить правильно, так что из них можно делать определенные выводы, имеющие большое значение. Результаты целого ряда ранних работ с напряженными и холоднотянутыми металлами указывали только на разрушение пассивирующей пленки при такой обработке. [c.367]

    Вакансии притягиваются друг к другу. Это объясня- ется тем, что при их сближении уменьшается число разорванных связей при образовании вакансий. Пусть координационное число в рассматриваемой решетке равно г. Тогда 2 атомов, соседних с вакансией, не используют г своих связей. Для двух отделенных друг от друга вакансий число таких неиспользованных связей равно 2г. Если же вакансии окажутся рядом, то число неиспользованных связей станет 2г—1. Поэтому вакансии способны к объединению (ассоциации). Взаимодействие вакансий приводит к образованию имеющих очень большое значение дефектов так называемых дислокаций. Дислокация по-английски означает сдвиг, смещение. Открытие этого вида дефектов объяснило важнейшее свойство металлов — пластичность. Благодаря этому свойству металлы можно подвергать механической обработке — прокатке, штамповке, волочению и т. п. даже в холодном состоянии. Металл способен под влиянием определенных напряжений течь, как жидкость. Каков же механизм такого течения  [c.333]

    На прочность металла оказывают влияние скорость и переменный характер деформирования, температура, среда, форма и абсолютные размеры детали, способ приложения нагрузки, неоднородность механических свойств, наличие остаточных напряжений, характер механической и термической обработки и др. [c.97]

    Положение еще более осложняется в случае стеклообразных полимеров. Известны некоторые доводы в пользу того, что наиболее опасные дефекты образуются не случайно, а определяются свойствами материала . Отсюда явствует, что размер опасного дефекта в месте разрушения определяется уровнем напряжения и временем, в течение которого напряжение действует . Влияние механической обработки и абразивного износа поверхности образцов незначительно, но условия изготовления, которые приводят к ориентации и к замораживанию напряжения, очень сильно влияют на свойства образцов. Однако различия прочности стеклообразных полимеров гораздо меньше, чем, например, это наблюдается в неорганических стеклах [c.146]

    Синтетические волокна термопластичны, поэтому ткани из них необратимо деформируются под влиянием механических воздействий во влажно-тепловых условиях и приобретают мятый некрасивый вид. Одновременно происходит усадка ткани, связанная с тем, что с повышением температуры увеличивается колебательное движение макромолекул, и в связи с этим частично нарушаются поперечные межмолекулярные связи, что приводит к переходу ранее находящихся под внутренним напряжением цепей в равновесное состояние, которое и фиксируется. Фиксирование объясняется образованием, но уже в новом положении, межмолекулярных связей. Изделие приобретает относительно устойчивую форму, которая может быть нарушена обработкой его только при более высокой температуре. [c.96]

    Ввиду, в целом, положительного влияния температурного фактора и незначительного влияния пластических деформаций для снятия остаточных напряжений могут быть рекомендованы методы термической, механической и термомеханической обработки, не вызывающие появления вторичных растягивающих напряжений [c.167]


    Олово легко рекристаллизуется при комнатной температуре, поэтому влияние механической обработки на материал невелико и связано с изменением размеров зерен, а не с напряжениями. Было установлено, что в растворе карбоната натрия мелкозернистое олово корродирует меньше, чем крупнозернистое [2, 3], но сомнительно, чтобы это наблюдение было справедливо в каждом случае. [c.156]

    На процессы коррозионного растрескивания металла большое влияние оказывают внутренние напряжения, возникшие в нем в результате механической или термической обработки. Оказывают влияние также напряжения, связанные с деформацией металла при сборке аппаратов и приложенные извне напряжения, связанные с эксплуатацией аппаратуры при повышенном давлении, изменением температурного режима и др. [c.94]

    При исследовании зависимости внутренних напряжений от состояния поверхности подкладки Рыковой [1] было показано, что для осадков значительной толщины (около 20 мк) влияние природы подкладки перестает сказываться, но состояние ее поверхности оказывает существенное влияние на внутренние напряжения. Так, влияние механической обработки поверхности на внутренние напряжения для осадков никеля, полученных из электролита, состав которого приведен в табл. 15, иллюстрируется следующими данными  [c.110]

    Коррозионно-механические трещины постепенно зарождаются на металлической поверхности под влиянием локализации анодного процесса и растягивающих напряжений в отдельных ее участках неоднородностях структуры металла, дефектах защитной пленки, поверхностных дефектах (царапины, риски, риски от обработки, трещины и др.). [c.333]

    Согласно сказанному выше, сталь, прошедшая холодную механическую обработку, корродирует в природных водах с той же скоростью, что и отожженная [1]. Однако в кислотах скорость коррозии нагартованной стали увеличивается в несколько раз (рис. 7.1). Традиционно многие авторы приписывали этот эффект остаточному напряжению в металле, которое увеличивает склонность к коррозии. Но эта интуитивная концепция, вероятно, неверна, так как остаточная энергия, приобретенная в результате холодной деформации (по калориметрическим данным обычно <7 кал/г), недостаточна, чтобы обусловить значительное изменение энергии Гиббса [3]. Вероятно, наблюдаемое увеличение скорости коррозии обусловлено скорее сегрегациями атомов углерода или азота по дефектным местам, образовавшимся вследствие пластической деформации (рис. 7.2), чем влиянием самих дефектов (рис. 7.3). На этих участках водородное перенапряжение ниже, чем на цементите или на железе [2], и это, возможно, наиболее важный фактор. Второстепенными факторами являются [c.130]

    Несовершенства кристаллической решетки металла должны оказывать определенное влияние на проницаемость металлических мембран для водорода, так как возможными путями диффузии водорода через металл являются 1) междоузлия кристаллической решетки 2) границы зерен в поликристаллических образцах 3) несовершенства кристаллической решетки внутри зерен. Соотношение между этими видами диффузии устанавливается, очевидно, в каждом конкретном случае в зависимости от состояния металла и условий (температура, давление газообразного водорода вне металла или плотность тока, состав электролита и т. д.). Роль междоузлий и границ зерен в диффузии водорода через железо и сталь обсуждалась ранее (раздел 2.6). Нарушения кристаллической решетки (вакансии, дефекты упаковки, дислокации, малоугольные границы в блоках мозаики и т. д.), вызванные механической или термической обработкой металла, могут служить ловушками , коллекторами, для водорода. Это приводит к сильному торможению процесса диффузии водорода через металл [268—270]. Имеющиеся в настоящее время экспериментальные данные недостаточны для того, чтобы надежно разделить влияние на диффузию водорода внутренних напряжений, границ блоков мозаики, дислокаций, вакансий и других нарушений кристаллической решетки [259]. Решение этой задачи осложняется тем, что один тип дефектов непрерывным образом может трансформироваться (за счет количественных изменений) в другой. [c.84]

    Первичными концентраторами напряжений могут быть, например, всевозможные риски и царапины, остающиеся на поверхности металла после механической обработки, иит-тинги, язвы и районы границ между зернами при неравномерном, избирательном или межкристаллитном характере коррозии для близкого к теоретическому случаю идеального состояния поверхности первичными коицептраторами могут быть колонии дислокаций, перемещающиеся к поверхности под влиянием механических напряжений. [c.25]

    В табл. 25 приведены данные по влиянию остаточных напряжений, возникающих при различных видах механической обработки в поверхностном слое металла, на сопротивление стали марки ЗОХГСНА к коррозионному растрескиванию (по данным Ажогина Ф.Ф.). [c.99]

    Предыстория изготовления труб или технологическая наследственность , в первую очередь механическая и термическая обработка, во многом обусловливают коррозию под напряжением. Так, формование уиоминаемых выше разрушившихся спиральношовных труб без должной настройки формующих машин привело к созданию в металле остаточных напряжений до 125 МПа (табл. 4). Кроме того, формующие ролики оставили сннральные вмятины на поверхности с соответствующим наклепом и понижением коррозионной стойкости (наблюдались полосы избирательной механохимической коррозии). Остатки прокатной окалины также создают на поверхности коррозионные гальванопары, которые могут привести электрохимический потенциал локальных участков к значениям, при которых возникают трещины. Механическая обработка поверхности (нанример, при зачистке поверхности трубы скребками) создает неоднородность физико-механического состояния поверхностного слоя и вызывает сильную электрохимическую гетерогенность поверхности, способствующую развитию значительной локальной коррозии. Большое влияние формы и количества неметаллических включений, т. е. степени загрязнения стали, на коррозионную усталость (снижение выносливости) также обусловлено электрохимической гетерогенностью в области включения, усиливающейся при приложении нагрузки вследствие концентрации напряжений. В этом отношении является неудовлетворительным качество стали 17Г2СФ непрерывной разливки в связи с большой загрязненностью неметаллическими включениями (в частности пластичными силикатами), что привело к почти полной потере пластичности листа в направлении поперек прокатки. [c.229]

    Тамман и Варентруп [28] при изучении влияния зазора на коррозионную стойкость железа в кислотах использовали образец, изображенный на рис. 77. Щель образуется в данном случае между двумя металлическими поверхностями. Для снятия механических напряжений, возникающих по месту сгиба, образцы подвергали термической обработке. Или-сом и Ла-Кэ [12] также были созданы образцы, которые имели зазор, образованный двумя металлическими поверхностями. Схематическое изображение этих образцов дано на рис. 78. Коррозионному воздействию подвергается только часть образца, обозначенная на рис. 78 буквой А, и поверхность металла в зазоре остальная часть поверхности закрашивается изолирующим лаком. Изменяя величину верхней части образца (обозначена буквой Б), можно изменить отношение поверхностей металла, находящегося в зазоре и омываемого объемом электролита, причем общая их площадь будет оставаться постоянной. [c.207]

    Таким образом, при конструировании машин и конструкций необходимо учитывать вредное влияние на поведение стали, работающей в условиях воздействия внешних растягивающих нагрузок и коррозионной наводороживающей среды, внутренних растягивающих напряжений в металле, возникающих при его механической и термической обработке, а также пластической деформации металла при изготовлении деталей, ведущих к образованию микрозародышей трещин и способствующих их развитию при абсорбции металлом водорода. [c.139]

    После усиленного катодного выделения водорода на стальных кольцах появляются неисчезающие расширения и межкристаллитные трещины [93. Механические свойства при этом восстанавливаются неполностью, разрушающее усилие становится незначительным, твердость возрастает [95]. Хрупкость, возникающая при катодном выделении водорода при комнатной температуре, временно исчезает при низких температурах (ниже —110° С), хотя при этом водород не улетучивается. По-видимому, приводящие к разрушению трехоревые напряжения в структуре при низких температурах недостаточно велики [96]. Поглощение водорода при травлении, влияние ингибиторов и длительной обработки можно хорошо оценить по изменениям упругих свойств тарельчатых пружин [97]. Количество водорода, необходимое для появления вздутия диаметром 2,5 см на поверхности стали, оценивается в 100, 50 или 25 сж это количество водорода должно проникнуть в металл, чтобы пузырь образовался на глубине 0,6 0,3 или 0,25 см. [c.35]

    Таким образом, при более высоких концентрациях наполнителя или больших временах воздействия происходит дополнительное рассеяние механической энергии вследствие существования каких-то дополнительных механизмов диссипации энергии. Это наблюдение было подтверждено в работе Льюиса и Нильсена [542], посвященной исследованию наполненной стеклянными шариками эпоксидной смолы (см. рис. 12.3), а также в исследованиях [392] и [430], в которых рассмотрены эпоксидные смолы, наполненные различными порошкообразными наполнителями. Дополнительным источником диссипации механической энергии служит трение между частицами наполнителя или между частицами наполнителя и полимером. Кроме рассеяния энергии, связанного со сдвиговыми взаимодействиями наполнителя и матрицы, вклад в затухание могут давать неоднородности распределения частиц и термические напряжения. На рассеяние энергии оказывает также существенное влияние обработка стеклянных сфер силанами. Обработанные системы характеризуются большими механическими потерями. С другой стороны, механические потери уменьшаются при образовании агрегатов сферических частиц в связи, очевидно, с тем, что полимер внутри агрегатов не дает вклада в рассеяние энергии. Уменьшение относительных механических потерь наблюдали также в других системах, например в поливинилацетате, наполненном Т102 [314], и в бутадиен-стирольном каучуке, находящемся в стеклообразном состоянии и наполненном кремнеземом и углеродной сажей [647] имеются также доказательства уменьшения механических потерь в области 7-перехода в наполненных эпоксидных смолах возможно, благодаря взаимодействию между поверхностью наполнителя и непрореагировавшими эпоксидными группами [392]. [c.320]

    Чтобы говорить о влиянии собственных напряжений на определенные свойства гальванически обработанных детален, чтобы оценить это влияние на показатели прочности, необходимо знать характер (растяжение или сжатие) собственных напряжений и приблизительную их величину. Трудность, осложняющая эту задачу, заключается в том, что до сих пор отсутствует возможность замера внутренних напряжений гальванически покрытых деталей. Поэтому почти во всех случаях приходится ограничиваться определением собственных напряжений выбранных образцов, хотя гальван чески обработанная деталь и образец подвергаются различным воздействия.м, начиная с обработки поверхности (в результате которой изменяются собственные напряжения) и кончая гальванической обработкой. В литературе приведен ряд методов для количественного определения собственных напряжений. В США имеется в продаже несколько механически действующих приборов, но они служат (за исключением рентгенографических анализов микроструктуры) только для грубых сравнительных измерений, пригодных лишь для проверки. [c.171]

    Активирующее влияние напряжения проявляется в более жестких условиях его наложения па полимер — при пластикации каучука и циклическом деформировании резин При этом активация полимера может происходить без разрыва химической связи . Наконец, при еще большем ужесточении условий разрушения механические напряжения приводят к разрыву химических связей. Это, например, наблюдается при вальцевании поливинилхлорида, резин из СКБ и НК 2, истирании резин и пластиков размоле в шаровой мельнице полистирола и полиметилметакрилата обработке их, а также политетрафторэтилена, полиизобутилена, полиэтилена, НК на фрезерном станке прп низкой температуре (77° К), криолизе крахмала измельчении в ступке ПВХ, янтаря, целлюлозы Расщепление молекул доказывается как уменьшением молекулярного веса 20. так и образованием свободных радикалов Химические изменения полимеров в результате разрыва химических связей непосредственно наблюдались при разрыве некоторых прозрачных пластмасс. Так, установлено, что на поверхности образующихся в процессе разрыва трещин серебра материал перерожден 2 25. Это, по-видимому, связано со взаимодействием образующихся при разрыве свободных радикалов с окружающей средой. Разрушение химических связей с выделением газообразных продуктов, таких же, как при термическом разложении, или несколько отличных, при обычном процессе разрыва наблюдалось с помощью масснектрографа 2 . Активирование или разрушение химических связей в полимере приводит к развитию химических реакций между ними и окружающей средой (кислородом воздуха 2 , наполнителями 28. 29 другими полимерами при совместном их разрушении 2. п т. п.). Подробно это отражено в ряде обзо- [c.65]

    Таким образом, экспериментально подтверждается значительное влияние вида напряженного состояния на технологическую пластичность металла при деформировании. Увеличение пластичности на 30—50% достигалось ограничением свободного уширения металла жесткими стенками штампа или калибра (при прокатке), т. е. созданием более мягкой схемы напряженного состояния. Применение схемы всестороннего сжатия при деформировании позволяет помимо повышения технологической пластичности получить более однородные структуру и механические свойства благодаря более равномерному распределению деформации. При ограничении свободного уширения металла жесткими стенками штампа при осаживании или калибра при прокатке удельное давление течения металла значительно возрастает. Полное ограничение уширения при прокатке может повысить удельное давление более чем в 3 раза по сравнению с прокаткой в калибрах со свободным уширением. Для металлов и сплавов, имеющих достаточно вьисокую пластичность, применять специальные приспособления для получения более мягких схем напряженного состояния (всестороннее неравномерное сжатие) нецелесообразно вследствие значительного увеличения расхода энергии и износа инструмента, но они совершенно необходимы при обработке сплавов с ограниченным запасом пластичности. [c.92]

    На железнодорожном транспорте легированные стали применяются меньше, чем углеродистые. С увеличением выпуска электровозов и тепловозов, в которых применяется значительное количество деталей, изготовленных из легированных сталей, потребность в них возрастает. Разработка. методов поверхностного упрочнения деталей, применяемых на железнодорожном транспорте, изготовляемых из легированных сталей, приобретает все большее практическое значение. Легирование хро.мом и никелем существенно изменяет природу сталей, а дополнительное насыщение поверхностного слоя углеродом или одновременно углеродом и азотом приводит к образованию структуры, значительно отличающейся по своим свойствам от структуры углеродистых сталей. Химико-термическая обработка (цементация и нитроцементация) легированных сталей изучалась в большей степени, чем углеродистых сталей обыкновенного качества. Это изучение касалось преимущественно технологии ведения процесса. Влияние процесса цементации на механические свойства стали исследовали И. С. Козловский [46], Ю. Ф. Оржеховский, Б. Г. Гуревич и С. Ф. Юрьев [31]. Они изучали влияние остаточных напряжений на повыше ние предела вьшосливости при химико-термической обработке. [c.168]

    Дефекты, возникшие в процессе механической обработки подложек, можно устранить химической полировкой, когда нарушенный слой удаляется путем его стравливания. Поверхностные напряжения могут быть сняты, а аморфизнрованный слой восстановлен применением высокотемпературного отжига при 1300—1500°С. Нежелательное влияние поверхностных напряжений в подложках можно снизить, уменьшая магнитострикцию эпитаксиальных пленок введением в их состав ионов различных редкоземельных элементов, обладающих коэффициентом магнитострикции Хщ = О, например ТЬ, Ей, При этом следует иметь в виду, что такие замещения могут оказать существенное влияние на размер и подвижность доменов. [c.176]

    Характерные релаксационные свойства металлов, их ползучесть, своеобразное влияние температуры на механизмы пластичности и упрочнения лежат в основе как процессов механической и термической обработки металлов, так и их эксплуатации в изделиях и деталях машин, особенно в условиях новой техники, предъявляющей исключительно высокие требования к материалам, например, при высоких температурах. Этим объясняется особое внимание в наших работах к адсорбционным эффектам на металлах — адсорбционному пластифицированию, т. е. облегчению пластических деформаций, адсорбционному понижению прочности — возникновению хрупкого разрушения при весьма малых интенсивностях напряженного состояния, вплоть до самопроизвольного диспергирования вместе с тем в последнее время нами были обнаружены новые важные особенности адсорбционных эффектов на металлах под влиянием малых примесей или в присутствии тончайших покрытий легкоплавкого поверхностно-активного металла в условиях легкоподвижности его атомов в процессе двумерной миграции. Эти новые проблемы, связанные с возможностью [c.15]

    Ер — эксиериметгтальное значение модуля упругости. Указанное соот-пошение действительно для температур, близких к абсолютному нулю. Техническая прочность оказывается значительно ниже теоретической. Как известно, размеры и форма испытуемого образца полимерного материала оказывают влияние на величину его удельной прочности. Большое влияние на прочность материала оказывает состояние его поверхности. В настоящее время является общепринятой статистическая теория распределения внутренних и внешних дефектов (трещин) в материале (Иоффе, Александров, Журков), исходящая из положения о действии механизма, концентрирующего среднее напряжение, приложенное к материалу на площади, в сотни и тысячи раз меньшей площади сечения испытуемого образца. Эта теория рационально объясняет наблюдаемое расхождение между значениями теоретической и технической прочности материалов. Поливиниловый спирт и его производные являются (при соответствующей их обработке) материалами макроскопически однородными. Их прочность на разрыв, как и для других полимерных материалов линейной структуры, находится в весьма характерной зависимости от степени полимеризации. До некоторой минимальной стенени нолимеризации (40—60) механическая [c.3]

    Однако кроме указанного выше измене-ния химического состава поверхности, связанного со способом изготовления образцов,, важное значение могут иметь и физические воздействия. Пакстон и Проктер [8] в своем обзоре привели некоторые сведения о влиянии механической обработки и шлифовки на чувствительность к коррозионному растрескиванию. Это влияние обусловлено топографией поверхности и образованием внутренних напряжений в поверхностных слоях образцов. Первое наиболее важно для высокопрочных материалов, чувствительных к надрезу напряжения сжатия, возникающие в поверхностных слоях, по-видимому, оказывают обычный эффект,, способствуя торможению или предотвращению растрескивания. [c.317]

    Характер деформации металла сильно сказывается на его склонности к коррозионному растрескиванию. Так, как правило, глубокая штамповка оказывает более сильное влияние, чем холодная прокатка или гибка. Те виды механической обработки, при которых в верхнем слое металла образуются сжимающие напряжения (проковка, обдувка дробью, обкатка роликами, опе-скоструировапие и др.), уменьшают склонность металла к коррозионному растрескиванию. Эти виды обработки обычно рекомендуются для борьбы с коррозионным растрескиваппем сварных швов. [c.102]

    На многих иллюстрациях, помещенных в гл. 1, в частнос1и на рис. 1.о и 1.5, представлены сложные конфигурации системы труб, часто применяемых в теплообменниках. Операция по гнутью труб определяет стоимость изготовления теплообменников. Гнутье труб обычно производится в холодном состоянии при этом металл на внутренней стороне изгибаемого изделия испытывает напряжение сжатия, а снаружи он подвергается растягивающим усилиям. Если пластическая деформация металла не должна превышать 25%, минимально допустимый радиус изгиба должен быть равен двум диаметрам. Материал трубы, термическая и механическая обработка и отношение толщины стенки к диаметру в совокупности оказывают существенное влияние на величину минимального радиуса изгиба. [c.34]

    Физико-механические свойства поверхностного слоя характеризуются структурой, глубиной, степенью упрочнения (наклепа), остаточными напряжениями. Эти свойства поверхностного слоя изменяются под влиянием совместного силового и теплового воздействия. В зависимости от метода обработки может доминировать одно из них. Различают три зоны (рис. 1.37) напряженно-деформированного состояния поверхностного слоя металлических деталей 1 — резко выраженной пластической деформации, которая характерюуется значительным искажением кристаллической решетки, измельченными зернами и значительным увеличением микротвердости 2 - упругопластической деформации, характеризуемой вытянутыми зернами, наволакиванием одних зерен на другие и значительным уменьшением микротвердости 3 — переходной упруго деформированной, представляющей зону влияния деформации и зону перехода к строению основного металла. [c.62]


Смотреть страницы где упоминается термин влияние механических напряжений влияние обработки: [c.28]    [c.86]    [c.383]    [c.784]    [c.110]    [c.273]   
Коррозия металлов Книга 1,2 (1952) -- [ c.181 ]

Коррозия металлов Книга 2 (1952) -- [ c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние напряжений

Напряжения механические, влияние

влияние механических



© 2024 chem21.info Реклама на сайте