Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионные процессы и характер коррозионных разрушений

    В зависимости от характера протекания коррозионного процесса, вида коррозионного разрушения применяют различные методы количественной оценки скорости коррозии. К ним относятся весовой, объемный, электрохимический, магнитометрический и другие методы. [c.38]

    Процесс коррозии начинается с поверхности металлического сооружения и распространяется в глубь него. При этом изменяется внешний вид металла на его поверхности образуются углубления (язвы, пятна), заполненные продуктами коррозии. По характеру коррозионного разрушения металлов различают следующие виды коррозии  [c.12]


    Коррозия в большинстве случаев протекает в весьма сложных и разнообразных условиях. Поэтому особое внимание следует уделять факторам, определяющим воспроизводимость результатов опытов. В основном эти факторы связаны с состоянием металлической поверхности и с окружающей средой. Это чистота поверхности металла, наличие и природа поверхностных пленок, присутствие различных структурных составляющих в сплаве, подготовка поверхности перед испытанием и поляризуемость металла. Особое внимание уделяют агрессивности среды, которая зависит от состава раствора, однородности и загрязненности образцов, возможности доступа воздуха и т. д. Все, что может повлиять на электрохимический процесс коррозии, будет также влиять на скорость и на характер коррозионного разрушения металлов и сплавов. [c.479]

    УСЛОВИЯ ПРОТЕКАНИЯ КОРРОЗИОННЫХ ПРОЦЕССОВ и ХАРАКТЕР РАЗРУШЕНИЯ ГАЗОНЕФТЕПРОМЫСЛОВОГО ОБОРУДОВАНИЯ [c.3]

    По характеру коррозионных разрушений различают общую и местную коррозию (рис. 1). К общей относят электрохимическую коррозию, продукты процесса которой не остаются на поверхности металла. Так, интенсивная общая коррозия наблюдается при взаимодействии железа с соляной кислотой, алюминия с едкими щелочами, меди с азотной кислотой, цинка с серной кислотой и др., а также в результате газовой коррозии при высокой температуре, когда вся поверхность металла покрыта слоем окалины. [c.3]

    Исследования С. Е. Павлова 23] показали, что, несмотря на высокую степень деформации Слитка, в процессе изготовления из него полуфабрикатов в материале остаются межкристаллит-ные пустоты или микротрещины, которые способствуют коррозионному растрескиванию под напряжением, создавая локализованный характер коррозионного разрушения по границам зерен даже при отсутствии цепочки выделений новой фазы. [c.271]

    Иопользование новых конструкционных материалов, таких, как алюминиевые аплавы, титан и его сплавы, взамен традиционных углеродистых сталей в значительной степени могло бы способствовать повышению технико-экономических показателей оборудования. Применение этих и других материалов в виде металлических покрытий углеродистой стали позволяет расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал необходимо выбирать с учетом характера коррозионного разрушения оборудования в процессе его эксплуатации. [c.3]


    По характеру и условиям протекания процесса, а также по внешнему проявлению коррозию подразделяют на различные виды. Сплошная коррозия (равномерная и неравномерная) характеризуется тем, что вся поверхность металла покрывается продуктами коррозии или равномерно растворяется в коррозионной среде. Местная коррозия происходит на отдельных участках поверхности металла и может быть разных видов пятнами (диаметр поражения больше глубины), язвенная (диаметр и глубина поражения близки по размеру), точечная или питтинговая (диаметр поражения меньше глубины), меМкрасталлитная (разрушение по границам зерен металла), нитевидная, сквозная, подповерхностная (расслаивающая) и др. [c.281]

    Очевидно, что при одном и том же количестве разрушенного металла (потеря веса), коррозия нанесет больший вред в том случае, когда ржавление проникло в глубь металла,а не распределилось по поверхности. Поэтому по характеру коррозионных разрушений различают несколько типов этого процесса (рис. 8). [c.345]

    Коррозионные процессы подразделяются на следующие виды по механизму взаимодействия металла со средой по виду коррозионной среды по виду коррозионных разрушений поверхности по объему разрушенного металла по характеру дополнительных воздействий, которым подвергается металл одновременно с действием коррозионной среды- [c.9]

    Полную характеристику процесса коррозии можно получить при снятии анодной и катодной кривых. Первоначально отмечают стационарные потенциалы и Ек, которые устанавливаются на электродах при погружении их в раствор, и снимают анодную и катодную поляризационные кривые. Точка пересечения этих кривых определяет максимальную плотность тока коррозии max и общий потенциал коррозии Екор. Анализ кривых позволяет определить характер коррозионного разрушения и лимитирующий фактор процесса (рис. 4.7). [c.320]

    Коррозию классифицируют по разным признакам механизму, условиям протекания, характеру коррозионных разрушений. По механизму происходящих процессов различают химическую и электрохимическую коррозию. Первый вид коррозии имеет место в неэлектролитах и сухих газах и подчиняется законам химической кинетики гетерогенных процессов. Она не сопровождается образованием электрического тока. Электрохимическая коррозия протекает в растворах электролитов и во влажных газах и [c.145]

    Хотя термодинамика дает возможность определить, насколько изучаемая система отдалена от состояния равновесия [числитель правой части уравнения (1)1, однако она в большинстве случаев не дает ответа на весьма важный и с теоретической, и с практической стороны вопрос с какой скоростью будет протекать термодинамически возможный коррозионный процесс Рассмотрением этого вопроса, а также установлением влияния различных факторов на скорость коррозии и характер коррозионного разрушения металлов занимается кинетика (учение о скоростях) коррозионных процессов. [c.11]

    Первопричиной коррозии металлов, в том числе и электрохимической коррозии, является их термодинамическая неустойчивость. При взаимодействии с электролитами металлы самопроизвольно растворяются, переходя в более устойчивое окисленное (ионное) состояние. Большой теоретический и практический интерес представляет механизм этого саморастворения металлов, т. е. механизм коррозионного процесса, его основные закономерности, скорость протекания процесса и характер коррозионного разрушения. [c.180]

    Электрический ток, протекающий через электролит, в котором находится металлическая конструкция (например, в морской воде или во влажном грунте), влияет на скорость и характер распределения коррозионного разрушения, так как он попадает на металлическую конструкцию и затем стекает в электролит. Если электрический ток постоянный, то участки металла, где положительные заряды (катионы) выходят в электролит, являются анодами (см. рис. 132, к) и подвергаются электрокоррозии — дополнительному растворению, пропорциональному этому току. Участки, где положительные заряды переходят из электролита в металл, являются катодами, на которых протекает катодный процесс, что в какой-то степени снижает скорость их коррозионного разрушения. Примером электрокоррозии металлов может служить местное коррозионное разрушение подземных стальных трубопроводов блуждающими постоянными токами, возникновение и механизм действия которых схематически показаны на рис. 260. [c.367]

    Посторонние примеси имеют тенденцию собираться у линейных дислокаций и дырок по границам зерен. Роль этих сегрегаций в процессе электрохимической коррозии металлов может быть различной увеличение растворимости металла, облегчение образования питтингов в местах скопления дислокаций (субграницах), изменение характера коррозионного разрушения. [c.327]

    Неоднородность металлической фазы, жидкой коррозионной средй и физических условий (см. с. 188), а также конструкционные особенности металлических сооружений (их полиметаллич-ность, наличие узких зазоров и др.) делают поверхность металл-электролит электрохимически гетерогенной, что часто оказывает влияние на скорость электрохимической коррЬзии металлов и ее распределение, изменяя характер коррозионного разрушения. Даже сплошная коррозия металлов бывает по этим причинам неравномерной или избирательной. Кроме того, встречается местная коррозия различных видов, опасность которой обычно тем больше, чем больше локализовано коррозионное разрушение. Местная коррозия не определяется общей скоростью коррозионного процесса. [c.414]


    Результаты коррозионных испытаний металлов в условиях коксования (при различных температурах, напряженных состояниях образцов, содержания серы и длительности температурного воздействия) показывают, что с увеличением температуры скорость коррозии экспоненциально возрастает [25]. При температуре 300-320 °С характер влияния напряжений в образце изменяется. По нашему мнению, это связано с протеканием на поверхности металла, контактирующей с нефтяным остатком, конкурирующих взаимовлияющих процессов. Образующиеся на поверхности в результате действия напряжений активные центры, с одной стороны, интенсифицируют процессы коррозии в начальный момент времени, а с другой стороны, создают благоприятные условия для образования кокса, что в последующем ведет к их блокированию. В дальнейщем действие этого фактора преобладает. Такой характер коррозионного разрушения под напряжением в средах коксования более четко выражен при повышенных температурах, поскольку интенсивность коксообразования при этом значительно возрастает. [c.21]

    На стадии проектирования неразъемных разнородных соединений, для защиты от агрессивного воздействия среда при шборе сварочшх материалов в технологии свархш необходимо учитывать специфику тахшх соединений. Возникает необходимость оценки коррозионного взаимодействия материалов, определения характера коррозионного разрушения и кинетики развития коррозионного процесса соединений, выполненных различными способами сварки. [c.64]

    Оценивая различные ускоренные методы по тому, как они отражают поведение никеля в естественных условиях, Ла-Кэ получил результаты, приведенные в табл. 17 [И]. Из таблицы видно, что скорость коррозии никеля при ускоренных испытаниях значительно выше скорости коррозии его в естественных условиях наибольшая скорость коррозии никеля наблюдалась при испытании в атмосфере, содержащей ЗОг. Увеличение достигало при этом 2000 раз. Поскольку при таком сильном ускорении процесса коррозии возможно искажение характера коррозионных разрушений, ускоренное испытание в присутствии больших концентраций 502 следует рассматривать как испытание, определяющее качество покрытия, а не его защитную способность. Более умеренное увеличение скорости коррозии наблюдалось, когда в камере распылялся 5%-ный раствор хлористого натрия, содержащий уксусную кислоту и хлорную медь (СА 55-испытание), а также при испытании по методу корродкот. При СА 55-исныта-нии скорость коррозии повышалась в 20 раз, при испытании методом корродкот — в 50. [c.174]

    Решение практических задач стало возможным благодаря серьезным успехам советских ученых в развитии науки о коррозии ме-та.тлов. Подобно многим другим наукам, тесно связанным с развитием техники, наука о коррозии развивалась с учетом реальных практических запросов и прежде всего с учетом большого количества факторов, от которых зависят как скорость, так и характер коррозионного разрушения металла. К таким факторам относятся природа и структура металла, химический состав коррозионной среды, температура, гидродинамические условия эксплуатации изделия. В этих условиях учение о коррозии металлов могло успешно развиваться только с использованием достижений целого ряда смежных областей науки. Однако центральным вопросом в этом учении всегда оставался механизм коррозионного процесса, который по своей природе в подавляющем большинстве случаев является электрохимическим. По этой причине развитие учения о коррозии металлов тесно связано с развитием электрохимии. Первое научное обоснование процессов коррозрш стало возможным только после того, как электрохимия сложилась в самостоятельную науку и были сформулированы основные ее законы. Знаменитые опыты Л. Гальвани, послужившие толчком к развитию учения об электродвижущей силе, работы А. Вольта, В. В. Петрова, Б. С. Якоби, приведшие [c.225]

    Таким образом, гомогенная трактовка протекания электрохимического коррозионного процесса, являющаяся вполне законной для жидкого металла, при переходе к твердому металлу может слуокить только известным приближением являющимся упрощенной картиной при наличии в металле инородных включений и пригодным только для металлов повышенной частоты или для количественной оценки случаев более или менее равномерного характера разрушения поверхности корродирующего металла, т. е. когда общая величина коррозии представляет интерес. [c.186]

    В большинстве практических случаев протекание электрохимической коррозии обычно характеризуется локализацией анодного и катодного процессов на различных (более или менее постоянных) участках корродирующей поверхности металла, что приводит к неравномерному или местному характеру (см. с. 15) коррозионного разрушения. Эти отличающиеся по своим физическим и химическим свойствам участки корродирующей поверхности металла, на которых происходят анодный или катодный процессы, являются в зависимости от их размеров короткозамкну- [c.186]

    Разрушение металлических аппаратов, конструкций, трубопроводов и других металлических изделий может быть вызвано различными причинами. Однако основной причиной, вызывающей коррозионное разрушение мета.члов и сплавов, является протекание на их поверхности электрохимических или химических реакции вследствие воздействия внешней среды. В зависимости от характера этих реакций коррозионные процессы происходят по двум механизмам — электрохимическому и химическому. [c.5]

    Коррозионное растрескивание и коррозионно-усталостное разрушение металлов следует отличать от межкристаллитной коррозии металлов, протекающей без наличия механических напряжений в металле. Разрушения металлов типа коррозионного растрескивания и коррозионной усталости имеют много общего, поскольку характерным для обоих явлений является образование в металле трещин и отсутствие на его поверхности значительных раз.ъеданий. Только изредка наблюдаются небольшие местные разъедания. Несмотря па большое количество исследований, механизм трещинообразования и развития трещин еще недостаточно ясен. Однако в большинстве исследований (Ю. Р. Эванс, Г. В. Акимов, Н. Д. Томашов, А. В. Рябченков, Е. М. Зарецкий, В. В. Герасимов и др.) подтверждается электрохимический характер коррозии. Наряду с электрохимическим фактором па коррозионный процесс оказывают влияние и факторы механического и адсорбционного снижения прочности металла. В зависимости от преобладающего действия того или иного фактора характер коррозионного разрушения может изменяться. [c.107]


Смотреть страницы где упоминается термин Коррозионные процессы и характер коррозионных разрушений: [c.423]    [c.8]    [c.634]    [c.25]    [c.134]    [c.423]    [c.13]    [c.225]    [c.19]    [c.997]    [c.115]    [c.345]    [c.487]    [c.333]    [c.52]   
Смотреть главы в:

Охрана труда в нефтеперерабатывающей и нефтехимической промышленности (нет 87-88, 157-158 стр.) -> Коррозионные процессы и характер коррозионных разрушений

Охрана труда в нефтеперерабатывающей и нефтехимической промышленности -> Коррозионные процессы и характер коррозионных разрушений




ПОИСК





Смотрите так же термины и статьи:

Процессы коррозионные

Разрушение коррозионное



© 2025 chem21.info Реклама на сайте