Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Репрессоры транскрипции

    БАК может выступать также и в роли репрессора транскрипции. Например, в галактозно.м опероне кроме стимулируемого БАК промотора Р[ и.меется репрессируемый БАК промотор Р- . и два про.мотора перекрываются друг с другом, так что присоединение одной молекулы РНК-полимеразы к промотору Рг препятствует присоединению другой молекулы РНК-поли.меразы к Рг (рис. 92). Присоединение БАК к ДНК мешает связыванию РНК-поли.меразы с Ра и не мешает связыванию с Р,. Поэтому БАК оказывает не только прямое, но и опосредованное активирующее действие на промотор Р]. Блокирование промотора Р-г приводит к усилению транскрипции с Р,, так как обеспечивает беспрепятственное связывание РНК-полимеразы с Р1. [c.150]


    Репрессор регулирует активность трех промоторов фага, из которы.х два, Рям и Рр, располагаются рядом. Транскрипция с промоторов Рк.ц и Рн идет в противоположных направ-лениях.. Между стартовыми точками этих промоторов располагаются три участка связывания репрессора Ок,, Ор. и Ор, (рис. 88). Участок Ор, перекрывается с участком связывания РНК-полимеразы с промотором Ррм. поэтому связывание репрессора с Ой, мешает связыванию РНК-полимеразы с Рк.м н тем самым подавляет транскрипцию. [c.145]

    Точно так же связывание репрессора с Он, подавляет транскрипцию Рй. [c.146]

    В результате прекращения транскрипции с промотора Р не считывается, в частности, ген сП. Отсутствие же белка СП должно инактивировать промотор Р е и прекратить тем самым дальнейшую транскрипцию гена с1. Промотор Р е действительно угнетается, а транскрипция гена с1 в лизогенной клетке тем не менее продолжается, но уже с другого, нового промотора Prm (рис, 153 и 155), активация которого — одно из следствий присоединения репрессора I к правой операторной зоне. Новый промотор функцио- [c.294]

    Скорость транскрипции регуляторных генов обычно очень низка, но держится на постоянном уровне. Возможно, это объясняется тем, что РНК-полимераза медленнее инициирует синтез цепей РНК на промо-торных участках регуляторных генов. Так, в каждой клетке Е. соН в норме содержится всего лишь около 10 молекул /ас-репрессорного белка. Поскольку репрессоры имеют очень важное значение для регуляции метаболизма, регуляторные гены представляют чувствительные участки для мутаций. Так, например, мутация регуляторного гена может привести к образованию дефектного репрессора, неспособного более [c.202]

    Блокируя эти операторы, репрессор предотвращает синтез ферментов, необходимых для исключения ДНК фага Л, из бактериальной хромосомы, а также для репликации и транскрипции остальных генов. [c.260]

    Считают, что в клетке есть всего лишь несколько молекул репрессора фага Я. В обычном состоянии этого достаточно для того, чтобы поддерживать состояние профага. Вместе с тем ультрафиолетовое облучение бактерии (действующее, по-видимому, опосредовано, через подавление синтеза ДНК) приводит к инактивации репрессора и транскрипции других оперонов фага X. [c.261]

    Как показано на рнс. 15-22, хромосома обычно подразделяется на четыре оперона короткий — продуцирующий репрессор, ранний левый, ранний правый и поздний ). Ранние опероны детерминируют в основном синтез ферментов, обеспечивающих репликацию и рекомбинацию, а также синтез регуляторных белков. Поздний оперон связан с синтезом белков, необходимых для организации вирусных частиц он должен транскрибироваться с более высокой скоростью, которая обеспечивается Продуктом гена Q. В пределах позднего оперона гены от А до F участвуют в упаковке ДНК фага Айв образовании головок, тогда как гены от 2 до / обеспечивают синтез и сборку отростков. Гены S -а. R продуцируют белки, вызывающие разрушение мембраны бактерии-хозяина и лизис клетки. На последних стадиях фазы литического развития большая часть ранних генов выключается другим репрессором фага X (кодируемым геном его). Из сказанного видно, что регуляция транскрипции даже у вирусов может представлять собой достаточно сложный процесс. [c.261]


    Непосредственно по соседству с промотором расположен оператор (о)—место связывания репрессора (R). Когда оператор свободен, транскрипция запускается и, пройдя операторный участок, доходит до генов, детерминирующих синтез трех указанных выше белков. Но если оператор связан с репрессором, транскрипция блокируется. В то время когда была впервые предложена модель оперона, химическая природа репрессора была неизвестна. Сейчас, однако, уже известно, что в некоторых случаях 1репрессорами служат белки. Все хорошо изученные репрессоры представляют собой олигомерные белки, способные подвергаться аллостерическим изменениям. Так, /а/ -репрессор состоит из четырех идентичных субъединиц с мол. весом 37 200, каждая из которых содержит 347 аминокислотных остатков. В каждой субъединице имеется один участок для связывания с оператором и другой (аллостерический) для связывания с эффектором (на рис. 15-3 для простоты вместо четырех субъединиц изображены только две). [c.202]

    Удаление гистона Н1 из транскрипционно активного хроматина [151 —154]. В ранних опытах Дж. Боннера (США) было показано, что ДНК в составе хроматина является гбраздо худшей матрицей, чем свободная ДНК-На основании этих наблюдений было высказано предположение, что гистоны являются репрессорами транскрипции. [c.143]

Рис.. 3.1, Принципы оиерониого управления транскрипцией (по Ратиеру, 1983, с иамеиеииями). А индуцируемый оперон (/ - в отсутствие субстрата транскрипция блокирована 2 — в присутствии субстрата репрессор инактивируется) Б — репрессируемый оперон (/ — в отсутствие избытка продукта репрессор неактивен 2 — избыток продукта активирует репрессор, транскрипция блокирована) Рис.. 3.1, Принципы оиерониого управления транскрипцией (по Ратиеру, 1983, с иамеиеииями). А индуцируемый оперон (/ - в отсутствие субстрата <a href="/info/1868805">транскрипция блокирована</a> 2 — в присутствии субстрата репрессор инактивируется) Б — репрессируемый оперон (/ — в отсутствие избытка <a href="/info/591233">продукта репрессор</a> неактивен 2 — <a href="/info/105198">избыток продукта</a> <a href="/info/1898304">активирует репрессор</a>, транскрипция блокирована)
    Последствия связывания с батее сложные. Этот участок частично перекрывается с участком связывания РНК-патн.меразы с промотором PR, поэтому связывание репрессора с подавляет транскрипцию с Рн. Степень перекрывания Ов с участком связывания РНК-патимеразы с промотором Ркч очень мала в нем имеется только одна фосфатная группа ДНК, с которой контактируют и РНК-пати.мераза, и репрессор. Поэтому. южно думать, что связывание репрессора с Од, не мешает связыванию РНК-поли.меразы с Ркм. Более того, показано, что репрессор, связываясь с Од, , значительно стимулирует (до десяти раз) транскрипцию с Ррч. Предполагается. что активирующее действие репрессора обусловлено тем, что в районе общего фосфата. между РНК-патимеразой и репрессором возникает белок-белковый контакт, помогающий РНК-полимеразе начать транскрипцию с промотора Рдм (рис. 88). [c.146]

    БАК состоит из двух идентичных субъединиц. Каждая субъеди-иица образует два до.мена, но в отличие от репрессора фага л за связывание с ДНК отвечает С-концевой домен., -концевой домен БАК связывается с сАМР и обеспечивает межсубъедиянчные контакты в димере. Как и у репрессора фага л и многих других регуляторов транскрипции, связывание БАК с ДНК осущестатяется за счет пары бнспиральных элементов, погруженных в большие борозд- [c.148]

    Л еханизм действия Б.4К не вполне понятен. По аналогии с репрессором фаза >. можно предположить, что существенную роль играют контакты белков-регуляторов между собой и с РНК-молиме-разой. Скорее всего с РНК-полимеразой непосредственЕЮ взаимодействует лишь ближайший к ней белок. В пользу этого говорит, например, то, что повышение концентрации белков. alT и. гаС снижает зависимость транскрипции соответствующих оперонов от [c.149]

    Оператор лактозного оперона располагается сразу за стартовой точкой транскрипции. Долгое время считалось, что присоединение лактозного репрессора к про.мотору стерически мешает присоединению РНК-полимеразы. Однако недавно получены данные, свидетельствующие о том, что репрессор н РНК-полимеразы могут расположиться на промоторе рядом друг с другом. Поэтому приходится ду.мать о более изощренных механизмах репрессии, включающих специфические контакты репрессора с РНК-полимеразой. В лактозном опероне имеется два псевдооператора, сходных по нуклеотидной последовательности с оператором, но обладающих [c.150]

    Два оператора имеется в галактозном опероне. Один из них располагается в районе —60 п. н. промотора, другой — в районе -г55 (рис. 92). Показано, что связывание репрессора с операторами ие мешает связыванию БАК и РНК-полимеразы с промотором. Поскольку для эффективной репрессии нужны оба оператора, пред-лолагается, что молекулы репрессора, расположенные на операторах, взаимодействуют друг с другом, образуя петлю ДНК- Такая конформация каким-то образом мешает инициации транскрипции. [c.151]

    Образование петель постулировано и при репрессии арабинозного оперона агаВАО. Репрессоро.м этого оперона является белок, кодируемый геном агаС. В отсутствие арабинозы АгаС-белок, являющийся димером, репрессирует агабЛО-оперон, а в присутствии арабинозы превращается в активатор, который активирует этот оперон. Кроме того, АгаС-белок как в присутствии, так и в отсутствие арабинозы умеренно репрессирует транскрипцию своего собственного гена, в результате чего концентрация АгаС-белка поддерживается на постоянном уровне. [c.151]

    Особо существенную роль в дальнейшем развитии событий играют белки — продукты фаговых генов сП и III. Первый из них способен присоединяться к определенным участкам ДНК фага X. В результате здесь активируются новые промоторы для клеточной РНК-полимеразы, в частности промоторы Р е и Pi (рис. 153, б), левонаправленная транскрипция с которых обеспечивает считывание соответственно генов с1 и int. Продукты этих генов — репрессор с1 и интеграза,— если они накапливаются в достаточных количествах, направляют судьбу зараженной клетки в сторону лизоге-нии. В принятии такого важного решения участвует несколько инстанций — вирусных и клеточных регуляторных систем. [c.293]


    После активации промотора Prm транскрипция гена с1 автоматически поддерживается на постоянном уровне при избыточном накоплении белка I он присоединяется к участку Орз, что делает невозможной дальнейшую транскрипцию с промогора Р м активность этого промотора восстанавливается, как только концентрация репрессора снижается до уровня, при котором его хватает только для присоединения к участкам Ori и Орг. Такой способ регуляции активности гена при помощи продукта этого же гена называют аутогенной регуляцией. [c.295]

    Репрессированное состояние профага может поддерживаться неопредыенно долго при размножении лизогенных клеток. Однако при некоторых условиях (например, при активации клеточной SOS-системы см. с. 79) репрессор разрушается (или инактивируется) и тогда происходит индукция профага. В результате инактивации репрессора I возобновляется транскрипция с промоторов Р и Рь и синтезируются мРНК для белков Сго и N. Белок N оказывает уже известное на.м антитерминирующее действие, а белок Сго обеспечивает переключение транскрипции на новые рельсы — на путь продуктивной инфекции. Белок Сго, подобно белку С1,—репрессор, взаимодействующий с правой (Or) и левой (0J операторными Зонами ДНК фага X, Но сродство белка Сго к разным операторным участкам иное, чем у белка I. В частности, в правой операторной зоне белок Сго имеет наибольшее сродство к участку Gr (рис. 155). [c.295]

    Все эти регуляторные элементы позволяют хозяйской РНК-полимеразе II осуществить эффективную транскрипцию ранних генов вскоре после попадания ДНК этого вируса в клеточное ядро. В результате процессинга ранних транскриптов (см. с. 302) образуются мРНК для ранних белков, а затем и сами эти белки. Один из них — Т-антиген — играет центральную роль в последующей перестройке транскрипции вирусного генома. Он вызывает ряд эффектов. Во-первых, взаимодействует с участками вирусной ДНК, связывающими Т-антиген (сильнее всего с участком и слабее всего с участком ]11 см. рис. 158). В результате угнетается транскрипция ранних генов, в том числе и гена, кодирующего Т-антиген, Таким образом, Т-антиген проявляет здесь свойства репрессора, синтез которого подчиняется транскрипционной аутогенной регуляции. Впрочем, транскрипция ранних генов на поздней стадии прекращается не полностью. Она продолжается, хотя и со значительно. меньшей эффективностью, но при этом стартовая точка транскрипции заметно смещается, так что ТАТА-элемент оказывается теперь внутри транскрибируемой последовательности (рис. 158). Механизм, обеспечивающий позднюю транскрипцию ранней области с новой стартовой точки, не расшифрован. [c.301]

    Другой тип положительного контроля известен для арабинозного (ага) оперона (положение, соответствующее 1 мин на хромосомной карте Е. oli). В этом случае индуктор не только вызывает отщепление репрессора от операторного участка, но и превращает его в активато,р, который, подобно комплексу САР—сАМР, вызывает более эффективную инициацию транскрипции. [c.205]

    На основе описанных выше данных была сформулирована современная точка зрения, согласно которой основная функция гистонов состоит в том, чтобы обеспечить необходимую упаковку ДНК. Однако иногда гистон Н1 называют общим репрессором, удерживающим хроматин в компактно упакованном состоянии, препятствующем транскрипции. Поскольку процесс инициации митоза сопровождается фосфорилированием гистона Н1 при помощи специальной протеинкиназы, можно предположить, что этот гистон играет какую-то иную роль [ЗОО]. Другие гистоны, особенно Р4, подвергаются множеству модифицирующих воздействий, в том числе ацетилированию и фосфорилированию (обратимо) и -метилированию (необратимо) [301]. Значение этих реакций в регуляции таких процессов, как транкрипция и репликация, до сих пор неясно. [c.304]

    Какие еще белки кроме гистонов обнаруживаются в клеточных ядрах Методом электрофореза в полиакриламидном геле было установлено, что в ядрах клеток НеЬа содержится около 450 компонентов, большинство из которых присутствует в небольших количествах (<10 000 молекул в расчете на одну клетку) и не обнаруживается в цитоплазме [302]. К наиболее кислым белкам относится большое число ферментов, включая РНК-полимфазу. Кроме того, в ядрах содержатся 1) определенные репрессоры генов, в основном не идентифицированные, 2) бел ки, связывающие гормоны, и 3) многие другие белки [303]. Наряду с ядерными белками, которым уделяется обычно основное внимание, определенную роль в регуляции фенотипического выражения генов играет также мало исследованный класс небольших ядерных РНК. Молекулы этой РНК длиной от 65 до 200 нуклеотидов могут стимулировать транскрипцию специфических генов, связываясь с комплементарными участками ДНК. Таким образом, информация, транскрибированная с одного участка хромосомы, может оказывать влияние на процессы, протекающие на другом участке или на другой хромосоме [303а]. [c.304]

    Сходным образом осуществляется регуляция О.в. на уровне биосинтеза ферментов. При этом субстрат или продукт р-ции регулирует активность белкового репрессора, подавляющего транскрипцию (синтез матричной РНК на ДНК-матрице) соответствующего оперона (участок ДНК, кодирующий одну молекулу матричной РНК под контролем белка-репрессора). Примером регуляции при помощи положит. прямой связи может служить в данном случае управление расщеплением лактозы. Появление в среде лактозы инактивирует у бактерии Es heri hia oli соответствующий репрессор и тем самым разрешает транскрипцию оперона, кодирующего ферменты, катализирующие расщепление лактозы. Пример регуляции при помощи отрицат. обратной связи - управление биосинтезом гистидина. Избыток гистидина активирует репрессор, ингибирующий транскрипцию оперона, кодирующего ферменты биосинтеза гистидина. Если репрессор и белки, синтез к-рых он подавляет, кодируются одним опероном, то отрицат. обратная связь осуществляется без участия внеш. модуляторов активности репрессора. Аналогичным образом осуществляется регуляция биосинтеза белка на уровне трансляции (синтез белка ка РНК-матрице). Такой механизм регуляции позволяет синтезировать белок в строгом соответствии с потребностью в нем на данном этапе существования организма. [c.317]

    РЕГУЛЯТОРНЫЕ БЕЛКИ (от лат. regulo-привожу в порядок, налаживаю), группа белков, участвующих в регуляции разл. биохим. процессов. Важная группа Р. б., к-рым посвящена эта статья,-белки, взаимодействующие с ДНК и управляющие экспрессией генов (выражение гена в признаках и св-вах организма). Подавляющее большинство таких Р. б. функционирует на уровне транскрипции (синтез матричных РНК, или мРНК, на ДНК-матрице) и отвечает за активацию или репрессию (подавление) синтеза мРНК (соотв. белки-активаторы и белки-репрессоры). [c.217]

    Репрессор представляет собой обычно димер из двух идентичных полипептидных цепей, ориентированных во взаимно противоположных направлениях. Репрессоры физически препятствуют РНК-полимеразе присоединиться к ДНК в промоторном участке (место связывания ДНК-зависимой РНК-полимеразы-фермента, катализирующего синтез мРНК на ДНК-матрице) и начать синтез мРНК. Предполагают, что репрессор препятствует только инициации транскрипции и не оказывает влияния на элонгацию мРНК. [c.217]

    Для эффективной экспрессии генов необходимо не только, чтобы репрессор был инактивирован индуктором, но также реализовался и специфич. положит, сигнал включения, к-рый опосредуется Р. б., работающими в паре с циклич. аденозинмонофосфатом (цАМФ). Последний связывается со специфическими Р. б. (т.наз. САР-белок-активатор ката-болитных генов, или белковый активатор катаболизма-БАК). Это димер с мол. м. 45 тыс. После связывания с цАМФ он приобретает способность присоединяться к специфич. участкам на ДНК, резко увеличивая эффективность транскрипции генов соответствующего оперона. При этом САР не влияет на скорость роста цепи мРНК, а контролирует стадию инициации транскрипции-присоединение РНК-полимеразы к промотору. В противоположность реп-рессору САР (в комплексе с цАМФ) облегчает связывание РНК-полимеразы с ДНК и делает акты инициации транс-кр1шции более частыми. Участок присоединения САР к ДНК примыкает непосредственно к промотору со стороны, противоположной той, где локализован оператор. [c.218]

    Позитивную регуляцщо (напр., 1ас-оперона E. oli) можно описать упрощенной схемой при понижении концентрации глюкозы (осн. источника углерода) увеличивается концентрация цАМФ, к-рый связывается с САР, а образовавшийся комплекс-с 1ас-промотором. В результате стимулируется связывание РНК-полимеразы с промотором и возрастает скорость транскрипции генов, к-рые кодируют ферменты, позволяющие клетке переключаться на использование др. источника углерода-лактозы. Существуют и др. специальные Р. б. (напр., белок С), функционирование к-рых описывается более сложной схемой они контролируют узкий спектр генов и могут выступать в роли как репрессоров, так и активаторов. [c.218]

    Лактозный оперон (1ас-оперон) включает структурные гены трех ферментов X, V и А (отвечают за взаимозависимый синтез Р-галактозидазы, галактозилпермеазы и ацетилтрансферазы), контролирующих метаболизм лактозы в клетке (рис. 3.2). Экспрессия ферментов регулируется белком-репрессором — продуктом гена-регулятора (К), пространственно удаленного от гена-оператора (О). Субъединищ.1 репрессора (38кДах4) возникают с постоянной скоростью. Репрессор обладает высоким сродством к соответствующему оператору (К = моль/л). Именно белок-репрес-сор, будучи присоединен к гену-оператору, препятствует транскрипции структурных генов X, V и А. [c.38]


Смотреть страницы где упоминается термин Репрессоры транскрипции: [c.430]    [c.212]    [c.32]    [c.83]    [c.288]    [c.123]    [c.146]    [c.152]    [c.158]    [c.251]    [c.410]    [c.203]    [c.205]    [c.110]    [c.217]    [c.218]    [c.220]    [c.268]    [c.66]   
Современная генетика Т.3 (1988) -- [ c.174 ]




ПОИСК







© 2024 chem21.info Реклама на сайте