Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константы скорости роста цепи

    Значение эффективной константы скорости роста цепи f p зависит от условий проведения полимеризации, в частности от среды. При анионной полимеризации для оценки f p пользуются уравнением [c.102]

    Константы скорости роста цепи в катионной полимеризации [c.233]

    Здесь р — константа скорости роста цепи — коэффициент распределения мономера на границе раздела фаз водная фаза— частица — концентрация радикалов в частице Ь — среднестатистическое расстояние между центрами капли и частицы. [c.149]


    Как видно из выражения (3.46), диффузионный поток зависит от коэффициентов молекулярной диффузии мономера в водной фазе и частице О ) от размеров капель и частиц, меняющихся в ходе полимеризации (Л , Е,), а также от параметра IV, в который входят константа скорости роста цепи к , концентрация радикалов Сак- и коэффициент молекулярной диффузии в частице. Величину У можно рассматривать как параметр, характеризующий соотношение между скоростью химической реакции и скоростью диффузии молекул мономера в частице. [c.151]

    Выведите зависимость среднего времени существования единичного радикала от концентрации мономера и константы скорости роста цепи. Вычислите время существования радикала, при полимеризации бутадиена (кр = 100 л моль с ) в 0,5 М растворе. [c.47]

    Константа скорости роста цепи при полимеризации винилового мономера (60 °С) равна 0,705 10 л моль с . Отношение констант кр к° описывается уравнением [c.56]

    Определите активационные параметры стадии роста цепей при полимеризации (45 "С) бутадиена-1,3 (Ш), если энергия активации составляет 38,9 кДж моль , а константа скорости роста цепи при 60°С равна 1,0 10 л моль с .  [c.56]

    Значения константы скорости роста цепи при полимеризации винилацетата в интервале температур О—60 С составляют соответственно  [c.57]

    Выведите уравнение температурной зависимости константы скорости передачи цепи на винилхлорид. Температурная зависимость константы скорости роста цепи приведена в приложении III. [c.57]

    При полимеризации винилового мономера в растворе после достижения 35 %-ной конверсии эффективная константа скорости обрыва цепи уменьшилась в 60 раз по сравнению с первоначальной к , константа скорости роста цепи практически не изменилась. Вычислите ожидаемые отношения скоростей полимеризации и длин кинетической цепи при 35 %-ной конверсии и в начальный момент, если концентрация инициатора при 35 %-ной конверсии равна 80 %, а мгновенная эффективность инициирования составляет 75 % от исходных. [c.88]

    При катионной полимеризации в растворе, в которой [М ]о =/[1]о = 2,9 - 10 моль-л , а необратимый обрыв является медленным и протекает в результате взаимодействия активных центров с молекулами растворителя (6,4 моль х хл ), концентрация мономера (1,2 моль-л ) уменьшается в два раза через 20 мин после начала полимеризации. Вычислите константу скорости роста цепи, а также скорость полимеризации и среднечисловую степень полимеризации в указанный момент времени, если = 8,1 - 10 л - моль с . [c.121]


    Констант скоростей роста цепи  [c.203]

    А и М — молекулы инициатора и мономера соотв. звездочкой обозначены активные частицы, ведущие цепь). Константа скорости передачи цепи (кп) много больше константы скорости роста цепи (/ р). [c.562]

    Поскольку исходные мономеры обладают различной реакционной способностью, константы скоростей роста цепей кр также различны Относительную активность мономеров и радикалов характеризуют константами сополимеризации и г  [c.120]

    Отличительной особенностью изобутилена является его высокая реакционная способность по отношению к катионным агентам, и, как следствие, весьма высокая (более 10 л/моль-с) константа скорости роста цепи [258, 259, 262. Это обусловливает очень высокую скорость полимеризации, сопровождающуюся выделением значительного количества тепла, которое, как правило, чрезвычайно трудно отвести из зоны реакции. По этой причине достаточно точное измерение скорости катионной полимеризации на основании изучения процесса полимеризации ИБ в кинетической области из-за трудностей в постановке корректных количественных опытов (в первую очередь, ввиду неизотермичности процесса) и отсутствия строгих экспериментальных данных о концентрации активных центров вряд ли кем было проведено. Поэтому с достаточным основанием можно констатировать, что имеющиеся в литературе сведения о [c.114]

    Весьма существенна в анионных системах межмолекулярная ассоциация активных центров, обусловленная их ярко выраженным ионным характером и приводящая к понижению истинной концентрации активных центров [13]. Склонность к такой ассоциации растет в ряду щелочных катионов в сторону Ы, чем обусловлена низкая активность катализаторов на основе этого металла. Истинная производительность активных центров известна лишь для немногих анионных систем константы скорости роста цепи при анионной полимеризации окиси этилена даны в табл. 70 [9—11, 14]. [c.220]

    Приводятся также абсолютные значения констант скоростей реакции роста и обрыва цепи (их вычисление см. ниже). Отмечено, что степень полимеризации мономера определяется не значением константы скорости роста цепи Кобр, а соотношением Кобр/Кр - [c.230]

    До наступления изменения константы скорости роста цепи средняя молекулярная масса полимера практически не зависит от времени полимеризации. Однако при наличии в реакционной среде примесей, способных реагировать с макрорадикалами, степень полимеризации вначале- будет иметь пониженное значение, а после израсходования примесей приобретает нормальную величину. [c.100]

    Граничные условия (3.65)—(3.68) определяют концентрацию радикалов с в- в водной фазе, концентрацию радикалов в центре частицы с в-, концентрации мономера в центре частицы и на границе раздела фаз капля мономера—водная фаза. Условия сопряжения (3.67) на границе раздела фаз водная фаза—частица дают связь концентраций радикалов в водной фазе и в частице через коэффициент распределения и для концентрации мономера через коэффициент распределения р. Уравнения (3.68) являются условиями равенства диффузионных потоков на границе раздела фаз водная фаза—полимер-мономерная частица. Приведем обозначения задачи (3.47)—(3.68), которые не указывались выше С/ — концентрация инициатора тпр- — число растущих макрорадикалов в 1 см эмульсии Шр — число нерастущих макрорадикалов в 1 см эмульсии — вес капли с — концентрация мицелл М — молекулярный вес мономера р — плотность мономера р — плотность полимера Рз — площадь поверхности, занимаемая одним киломолем эмульгатора на поверхности адсорбированных слоев — степень агрегации мицелл — константа скорости распада инициатора k — константа скорости инициирования /Ср — константа скорости роста цепи k — константа скорости обрыва цепи / — эффективность инициирования — среднее значение концентрации мономера внутри частиц. [c.156]

    Как и в случае других цепных неразветвленных реакций, скорость инициирования процесса полимеризации может быть определена методом ингибиторов (см. стр. 313), константа скорости квадратичного обрыва цепей—методом прерывистого освещения (методом вращающегося сектора, см.стр. 299), а константа скорости роста цепи может быть вычислена по формуле (IX. 11) из значения скорости полимеризации (скорости расходования мономера), если известны скорость инициирования дП] и константа сгсорости квадратичного обрыва цепей. [c.360]

    Скорость роста макрорадикалов в начальный период полимеризации сохраняется постоянной и уменьшается при глубокой степени превращения, когда концентрация полимера в мономере, а вместе с этим и вязкость среды значительно возрастают. Так, константа скорости роста макрорадикалов винилацетата уменьшается в 3 раза после превращения в полимер 57% мономера и в 22 раза—при степени лревращенкя мономера 65%. Резкое уменьшение скорости роста цепи установлено для метилметакрилата при степени превращения в полимер, равной 50%. При полимеризации бутилового эфира акриловой кислоты константа скорости роста цепи снижается в 4 раза после превращения 20% мономера в полимер и в 700 раз по достижении 70%-ной концентрации полимера в мономере . [c.116]


    In — интенсивность падающего и поглощенного света 1 11, /с 12 константы скорости роста цепи, оканчивающейся звеном Ml, при реакции с мономерами М, и Мг соответственно 21 константы скорости роста цепи, оканчивающейся звеном М2, при реакции с мономерами М2 и Mi соответственно 0(11) 0(22) — константы скорости реакций o6pjbiBa при взаимодействии цепей, оканчивающихся одинаковыми звеньями Mi и М2 соот-ветвтвенно [c.5]

    Пример 308. Полимеризация сгирола в присутствии хлорной кислоты (0,0008 моль-л ) в среде хлороргаыического растворителя протекает на 50 % в течение 125 с. Скорость полимеризации пропорциональна текущей концентрации мономера и исходной концентрации инициатора до практически полного исчерпания мономера. Вычислите значение константы скорости роста цепи. [c.103]

    Способность молекул мономеров участвовать в реакции передачи цепи принято характеризовать константой самопередачи См, равной отношению константы скорости передачи цепи на мономер (км) к константе скорости роста цепи (кр), т. е. См =/%м/ р. Для большинства мономеров винилового ряда, не содержащих подвижных групп или атомов, км <С кр. Обычно См находится в пределах 10- —10- . Для аллильных мономеров, имеющих подвижный атом Н в а-положении к двойной С=С связи, константа См может быть на несколько порядков выше. [c.12]

    Скорость A.n., особенно при умеренных т-рах, в большинстве случаев значительно выше скорости радикальной полимеризации. Это обычно связано с более высокой действующей концентрацией активных частиц (в пределе она м. б. равиа исходной концентрации инициатора). Собственная же реакц. способность разл. форм активных центров варьирует в очень широких пределах даже для одного и того же мономера. Напр., для А. п. стирола при 30 °С порядок величины абс. константы скорости роста цепи (в л/моль-с) при переходе вдоль равновесий (2) изменяется от 10 " (литиевые ассоциаты, II) до 10 (своб. анионы, V). [c.167]

    При взаимод. олефинов с Ц.-Н. к. происходит координация мономера с алкильным производным переходного металла М и послед, его внедрение по связи М — С, М — М (см. Металлокомллексный катализ). Внедрение обычно протекает многократно время одного акта внедрения составляет 10 -10" с энфгия активации элементарного акта 21-65 кДж/моль, константа скорости роста цепи Ю -Ю л/(моль с). Причина легкости внедмния связана с тем, что мономер, входящий в координац. с ру комплекса, за счет своих донорных св-в уменьшает энергию диссоциации связи М — С. Обрыв цепи обычно осуществляется по р-циям внугои- и межмол. диспропорционирования без образования своб радикалов. [c.360]

    Влияние условий полимеризации. Констаита сксрос Ги роста цепи при катионной полимеризации определяется не только природой мономера и температурой, но и зависит от типа инициирующей добавки и нолярности среды, т. е. действие всех этих факторов имеет комплексный характер, и нельзя их рассматривать изолированно. С понижением температуры скорость процесса уменьшается, но при этом возрастает диэлектрическая проницаемость среды, в результате чегс уменьшится влияние противоиона на процесс это может привести к повышению константы скорости роста цепи. Ниже показано, как изменяется с температурой при полимеризации изобутилена в среде СНгОг на катализаторе Н2О  [c.129]

    Полярность среды и температура полимеризации оказывают влияние на скорость роста цеРн и на природу получаемого полимера. Так, при полимеризации стирола прн одинаков ,1х температуре и природе противоиона константа скорости роста цепи возрастает с ростом полярности среды прн снижении температуры скорость полимеризации уменьшается Однако эта корреляция распространяется только на данную конкретную систему и не может быть перенесена на все процессы, и ицнируемые анионными катализаторами. [c.135]

    Уоллинг и Пеллон [362] изучали полимеризацию стирола прп 40° и давлениях до 6000 кГ см . Эти исследователи определяли влияние давления на константу скорости роста цепей, измеряя скорость полимеризации эмульсии стирола, содержавшей около 40% полимера и около 60% незаполимеризовав-шегося стирола. Ниже приведены полученные в этой работе результаты  [c.205]

    При аутоокислении многих диалкилбензолов были получены как MOHO-, так и дигидроперекнси. Соединения, содержащие две различные алкильные группы, образуют две моногидроперекиси их количественное соотнощение зависит от природы алкильных групп, в частности от того, являются ли они первичными или вторичными. Рассел 2, изучая окисление ряда алкилбензолов при 90° С, показал, что первичные и вторичные пероксирадикалы распадаются быстрее, чем третичные, тогда как константы скорости роста цепи увеличиваются по мере возрастания стабильности аралкильного радикала. При этом, однако, следует учитывать полярность электронодонорные группы увеличивают, а электроноакцепторные — уменьшают скорость роста цепи. Относительная реакционная способность многих алкилбензолов в реакциях с радикалами может быть рассчитана. [c.110]

    Относительная реакцнонноспособность представляет собой отношение константы скорости реакции мономера с макрораднкалом к константе скорости роста для стирола, принятой за 1 константы скорости реакции макрорадикала с чужим мономером рассчитывались, исходя нз значений констант сополимеризации и констант скорости роста цепи для соответствующих мономеров. [c.8]


Смотреть страницы где упоминается термин Константы скорости роста цепи: [c.149]    [c.192]    [c.233]    [c.51]    [c.102]    [c.9]    [c.200]    [c.29]    [c.76]    [c.92]    [c.52]    [c.157]    [c.115]    [c.120]    [c.66]    [c.202]    [c.213]    [c.110]   
Эмульсионная полимеризация и её применение в промышленности (1976) -- [ c.85 , c.106 , c.107 , c.211 ]

Полистирол физико-химические основы получения и переработки (1975) -- [ c.30 ]

Полиэфирные покрытия структура и свойства (1987) -- [ c.51 , c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Константа скорости

Рост цепи

Скорость роста цепи



© 2025 chem21.info Реклама на сайте