Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты модуляторы активности

Рис. 9-19. Схематическая модель взаимодействия между субъединицами аллостерического фермента. У многих аллостерических ферментов центр связывания субстрата и центр связывания модулятора расположены в разных субъединицах-соответственно каталитической (С) и регуляторной (К). Сообщение о присоединении положительного модулятора М к его специфическому центру в регуляторной субъединице передастся посредством конформационных изменений каталитической субъединице, которая становится активной и ее сродство к связывающемуся с ней субстрату 8 новыщается. После отделения модулятора М от регуляторной субъединицы фермент вновь переходит в неактивную или менее активную форму. Рис. 9-19. <a href="/info/1585918">Схематическая модель</a> <a href="/info/1387194">взаимодействия между субъединицами</a> <a href="/info/70324">аллостерического фермента</a>. У многих <a href="/info/1349731">аллостерических ферментов центр</a> <a href="/info/100571">связывания субстрата</a> и <a href="/info/101606">центр связывания</a> модулятора расположены в <a href="/info/1532036">разных субъединицах</a>-соответственно каталитической (С) и регуляторной (К). Сообщение о присоединении <a href="/info/1402605">положительного модулятора</a> М к его специфическому центру в <a href="/info/103082">регуляторной субъединице</a> передастся посредством <a href="/info/2999">конформационных изменений</a> <a href="/info/100178">каталитической субъединице</a>, которая становится активной и ее сродство к связывающемуся с ней субстрату 8 новыщается. <a href="/info/1660286">После отделения</a> модулятора М от <a href="/info/283438">регуляторной субъединицы фермент</a> вновь переходит в неактивную или менее активную форму.

    Другим заслуживающим внимания примером может служить регуляция активности глутаминсинтетазы у Е. соИ, в которой участвует целый набор аллостерических эффекторов. У этой бактерии глутамин играет роль донора аминогрупп при биосинтезе многих метаболических продуктов (рис. 22-9). Известно восемь продуктов обмена глутамина, которые выполняют у Е. соН функцию отрицательных модуляторов активности глутаминсинтетазы, действуя по типу обратной связи. Глутаминсинтетаза-один из самьк сложных регуляторных ферментов, какие мы знаем. [c.660]

    Аллостерические взаимодействия проявляются в характере кривых зависимости начальной скорости реакции от концентрации субстрата или эффектора, в частности в -образности этих кривых (отклонение от гиперболической кривой Михаэлиса-Ментен). 8-образный характер зависимости V от [8] в присутствии модулятора обусловлен эффектом кооперативности. Это означает, что связывание одной молекулы субстрата облегчает связывание второй молекулы в активном центре, способствуя тем самым увеличению скорости реакции. Кроме того, для аллостерических регуляторных ферментов характерна нелинейная зависимость скорости реакции от концентрации субстрата. [c.156]

    Вещества, действующие как модуляторы активности ферментов, по своим химическим свойствам часто совсем ие сходны с субстратами, продуктами или кофакторами регулируемых ими ферментативных реакции. Этого и следовало ожидать если фер- [c.22]

    Подобные типы ингибирования конечным продуктом и активирования первым продуктом свойственны аллостерическим (регуляторным) ферментам, когда эффектор, модулятор, структурно отличаясь от субстрата, связывается в особом (аллостерическом) центре молекулы фермента, пространственно удаленном от активного центра. Следует, однако, иметь в виду, что модуляторами аллостерических ферментов могут быть как активаторы, так и ингибиторы. Часто оказывается, что сам субстрат оказывает активирующий эффект. Ферменты, для которых и субстрат, и модулятор представлены идентичными структурами, носят название гомотропных в отличие от гетеротропных ферментов, для которых модулятор имеет отличную от субстрата структуру. Взаимопревращение активного и неактивного аллостерических ферментов в упрощенной форме, а также конформационные изменения, наблюдаемые при присоединении субстрата и эффекторов, представлены на рис. 4.25. Присоединение отрицательного эффектора к аллостерическому центру вызывает значительные изменения конфигурации активного центра молекулы фермента, в результате чего фермент теряет сродство к своему субстрату (образование неактивного комплекса). [c.156]


    Регуляция глюконеогенеза. Важным моментом в регуляции глюконеогенеза является реакция, катализируемая пируваткарбоксилазой. Роль положительного аллостерического модулятора этого фермента выполняет ацетил-КоА. В отсутствие ацетил-КоА фермент почти полностью лишен активности. Когда в клетке накапливается митохондриальный ацетил-КоА, биосинтез глюкозы из пирувата усиливается. Известно, что ацетил-КоА одновременно является отрицательным модулятором пируватдегидрогеназного комплекса (см. далее). Следовательно, накопление ацетил-КоА замедляет окислительное декарбоксилирование пирувата, что также способствует превращению последнего в глюкозу. [c.341]

    Этот фермент аллостерический - активирующим модулятором является цитрат, если его нет активность фермента очень низкая. [c.317]

    Бьшо показано, что многие ферменты, участвующие в клеточном метаболизме, существуют в нескольких молекулярных формах. Все эти формы данного фермента катализируют одну и ту же реакцию, но различаются по активности, а иногда и по чувствительности к аллостерическим модуляторам. Распространение изомерных форм того или иного фермента в различных тканях и органах определяется по меньшей мере четырьмя факторами. К ним относятся  [c.266]

    Кроме каталитической активности не- которые ферменты обладают также и регуляторной активностью. Они служат как бы дирижерами , задающими темп метаболическим процессам. Некоторые регуляторные ферменты, называемые аллостерическими, регулируют скорость реакций путем обратимого нековалентного присоединения специфических модуляторов, или эффекторов, к регуляторному, или аллостерическому, центру фермента. Такими модуляторами могут быть либо сами субстраты, либо какие-то промежуточные продукты метаболизма. К другому классу относятся регуляторные ферменты, способные изменять свою активность путем ковалентной модификации содержащихся в них специфических функциональных групп, необходимых для активности фермента. Некоторые ферменты существуют в нескольких формах, называемых изоферментами, которые различаются по своим кинетическим характеристикам. Многие генетические заболевания человека обусловлены нарушением в результате мутаций функционирования одного или нескольких ферментов. [c.268]

    Аллостерический центр. Специфический участок на поверхности молекулы аллостерического фермента (отличный от активного центра), с которым связывается молекула модулятора или эффектора. [c.1007]

    Благодаря новейшим данным о стереохимических изменениях, происходящих при ферментативном катализе и регуляции активности ферментов, мы можем ответить на эти вопросы с достаточной определенностью. В том, что структура белков существенно зависит от слабых связей, действительно есть больщой смысл . Взаимодействие ферментов с субстратами и с модуляторами ферментов в большинстве случаев, если не всегда,, сопровождается изменениями в третичной и четвертичной структуре фермента. С точки зрения стереохимии эти изменения могут быть большими или незначительными для биологической, функции они абсолютно необходимы. Скорость, с которой фермент катализирует определенную химическую реакцию, вероятно, зависит от того, насколько быстро его конформация может подвергнуться обратимому изменению в результате фер-мент-субстратных взаимодействий. Надлежащая реакция фермента на присоединение регулирующего метаболита тоже зависит от способности фермента изменять свою структуру высшего порядка. В одних случаях эти изменения затрагивают третичную конформацию фермента, в других (например, в случае гликогенфосфорилазы) регуляторный эффект связан с изменением четвертичной структуры. [c.215]

    Легко видеть, что влияние температуры на взаимодействия между ферментами и их субстратами и модуляторами сулит организмам как добро , так и зло . Если усиление взаимодействия, определяемого слабой связью (или евязями), облегчает протекание какого-то процесса, то изменение температуры, стабилизирующее эту связь (или связи), может давать организму преимущество. Если, например, более высокая способность фермента к присоединению молекулы субстрата благоприятна для его активности (что, как мы знаем, имеет место при низких концентрациях субстрата) и если слабые связи, стабилизирующие фермент-субстратный комплекс, при низкой температуре усиливаются, то возможно частичное снятие замедляющего влияния низкой температуры на данную реакцию. Если же, наоборот, слишком высокая или слишком низкая температура делает основанное на слабых связях взаимодействие между ферментом и субстратом (или модулятором) очень нестабильным, то это может сказываться на реакции и на организме отрицательно, [c.222]

    Б. Фермент с чрезвычайно высоким сродством к субстрату. П1)и отсутствии модуляторов такой фермент будет давать макси.мальную скорость реакции в значительной части физиологического диапазона концентраций субстрата. Поэтому увеличение количества субстрата приведет к быстрому экспоненциальному повышению насыщенности им фермента, который и так уже забит субстратом в присутствии положите.тьного модулятора дело будет обстоять еще хуже. Отрицательный же модулятор бч лет лишь незначительно снижать активность фермента сродство к субстрату останется настолько высоким, что адекватная реакция на сигнал, требующий снижения или прекращения катали.за, может оказаться невозможной. [c.277]


    Сходным образом осуществляется регуляция О.в. на уровне биосинтеза ферментов. При этом субстрат или продукт р-ции регулирует активность белкового репрессора, подавляющего транскрипцию (синтез матричной РНК на ДНК-матрице) соответствующего оперона (участок ДНК, кодирующий одну молекулу матричной РНК под контролем белка-репрессора). Примером регуляции при помощи положит. прямой связи может служить в данном случае управление расщеплением лактозы. Появление в среде лактозы инактивирует у бактерии Es heri hia oli соответствующий репрессор и тем самым разрешает транскрипцию оперона, кодирующего ферменты, катализирующие расщепление лактозы. Пример регуляции при помощи отрицат. обратной связи - управление биосинтезом гистидина. Избыток гистидина активирует репрессор, ингибирующий транскрипцию оперона, кодирующего ферменты биосинтеза гистидина. Если репрессор и белки, синтез к-рых он подавляет, кодируются одним опероном, то отрицат. обратная связь осуществляется без участия внеш. модуляторов активности репрессора. Аналогичным образом осуществляется регуляция биосинтеза белка на уровне трансляции (синтез белка ка РНК-матрице). Такой механизм регуляции позволяет синтезировать белок в строгом соответствии с потребностью в нем на данном этапе существования организма. [c.317]

    На рис. 22-10 показаны три изофермента (они обозначены буквами А, В и С), не имеюпще аллостерических модуляторов. Активность этих изоферментов регулируется путем изменения скорости их синтеза в клетке их называют репрессируемыми ферментами. Синтез изоферментов А и В репрессируется у Е. соН при наличии достаточного количества метионина. Точно так же и синтез изофермента С репрессируется, если в среде в достаточном количестве присутствует изолейцин. Механизм, регулирующий биосинтез аминокислот путем репрессии и дерепрессии (гл. 29), обычно реагирует медленнее, чем механизм аллостерической регуляции. [c.662]

    Следующий этап разработки ИФАМ состоит в выборе модулятора, имеющего необходимые свойства 1) способность в малых концентрациях изменять активность индикаторного фермента (примерами таких модуляторов служат ингибиторы ферментов, отличающиеся высоким связывающим сродством, т. е. низкой Ki) . 2) отсутствие подобной модулирующей активности в исследуемых образцах 3) сохранение существенной модулирующей активности после ковалентного присоединения к лигандам 4) утрата активности конъюгатом [модулятор — лиганд (М—Л)] при связывании с антителами против Л 5) в случае необратимых модуляторов реакция должна быть быстрой и специфичной по отношению к индикаторному ферменту, а ковалентный комплекс [фермент—модулятор] должен быть устойчивым в условиях анализа на протяжении всего опыта. [c.59]

    Подавляющее большинство процессов в клетке - ферментативные. Жизнь протекает при "низких" температурах, и без участия катализаторов химические превращения просто не могут происходить со скоростями, необходимыми Для осуществления сложных реакций, с разрывом прочных ковалентных связей. Регуляция мощного каталитического потенциала клетки достигается двумя принципиально разными путями изменением количества ферментов и активности последних. На активность фермента влияет количество доступного субстрата, 1 13ико-химические параметры среды и взаимодействие с особыми метаболитами, называемыми модуляторами. Ферменты, активность которых зависит от модуляторов, называют регуляторными. Они имеют для связывания субстрата центр, где протекает акт катализа, и еще один участок, называемый аллостерическим, для присоединения регулятора. Аллостерический путь регулирования обеспечивает "тонкую" настройку метаболизма в соответствии с изменяющимися условиями среды, и она осуществляется почти "мгновенно". [c.14]

    Теоретическая направленность занятий в данном разделе практикума по биохимии связана с анализом основных высокоэффективных механизмов регуляции активности ферментов, обсуждаемых в настоящее время в учебной литературе и на страницах известных биохимических журналов. К таким механизмам относятся аллостерический механизм контроля активности, реализующийся на уровне существования множественных форм ферментов механизм усиления, связанный с функционированием субстратных циклов адсорбционный механизм контроля, реализующийся при обратимом взаимодействии ферментов с биологическими мембранами регуляторный механизм с участием вторичных мессенжеров (цАМФ, С +) и универсальных модуляторов белковой природы (кальмодулин). [c.329]

    Точка расщепления СЗ конвертазой СЗ отмечена стрелкой, направленной вверх. СЗ (М 180 000) участвует в пропердиновом (альтернативном) пути , а также является физиологическим предшественником двух активных ферментов, малого СЗа и большого СЗЬ. СЗа участвует в реакциях возбуждения, а СЗЬ представляет субъединицу или модулятор четырех различных ферментов комплемента. Следует отметить, что в основе ннактивацин СЗа и СЗЬ также лежит ограниченный протеолиз. [c.76]

    Известна также аллостерическая регуляция активности гликогенсинтазы Ь. Будучи фосфорилированным, этот фермент мало или полностью неактивен, однако глюкозо-6-фосфат (при высокой концентрации) по аллостерическому механизму в значительной степени повышает активность гликогенсинтазы. Эта форма гликогенсинтазы называется D-формой или зависимой (dependent) формой от присутствия глюкозо-6-фосфата, а дефосфорилированная форма — активной и в отсутствие глюкозо-6-фосфата — 1-формой или независимой (independent) от присутствия этого модулятора. [c.280]

    Глутаматдеги дрогенеза является субъединичным гексамерным ферментом с молекулярной массой 336 000. В присутствии ADP она образует линейные агрегаты с молекулярной массой 2-10 , обладающие очень высокой активностью. Для того чтобы решить вопрос, является ли наблюдаемое возрастание активности следствием образования агрегатов или ADP действует как аллостериче-ский модулятор или эффектор непосредственно на мономерную форму, а агрегация — это только вторичное явление, Хортон и др. [25] присоединили мономерную форму глутаматдегидрогеназы к пористым стеклянным микросферам. Установлено, что в присутствии ADP даже в этом случае происходит возрастание активности, то есть возрастание активности не зависит от ассоциации. [c.438]

    Когда специфический ингибирующий, или отрицательный, модулятор связывается с аллостерическим центром, что происходит при повьппении концентрации модулятора в клетке, фермент переходит в. менее активздю или совсем неактивную форму, т.е. вьпслючается Когда же концентрация модулятора в клетке снижается, ингибитор покидает аллостерический центр и фермент вновь включается , т е. переходит в активную форму. [c.259]

    У таких более сложных ферментов каждый модулятор имеет свой специфический аллостфический центр, связываясь с которым модулятор посьшает ферменту сигналы о повьппении или снижении его каталитической активности. [c.260]

    В мьшщах действует второй механизм регуляции гликоген-фосфорилазной активности. Фосфорилаза Ь, сравнительно мало активная форма, может становиться более активной в результате нековалентного связывания с аллостерическим модулятором этого фермента, которым является АМР концентрация же АМР в мышцах возрастает по мере распада АТР в сократительных системах (рис. 15-14, см. также разд. 14.17). Активации фосфорилазы Ь под действием АМР препятствует АТР, выступающий в роли отрицательного модулятора. Таким образом, активность фосфорилазы [c.463]

    Фосфофруктокиназа (ФФК)-это сложный аллостерический фермент, управляемый многими положительными и отрицательными модуляторами. Механизмам его регуляции (у разных клеток различным) посвящены десятки научных статей. В скелетных мыщцах активность фосфофруктокиназы определяется концентрациями субстратов этого фермента (АТР и фруктозо-6-фосфата) и его продуктов (ADP и фруктозо-1,6-дифосфата) все эти соединения играют роль аллостерических регуляторов. Очень важны также в качестве регуляторов АМР, цитрат, ионы Mg , фосфат и некоторые другие метаболиты, присутствующие в мышечной ткани (табл. 15-1). Однако, хотя регуляции ФФК зависит от сложного взаимодействия ряда факторов, главными отрицательными модуляторами этого фермента являются АТР и цитрат, а самыми активными положительными модуляторами-АМР и фруктозо-1,6-дифосфат. Всякий раз, когда при очень активном мыщечном сокращении концентрация АТР падает, а энергии требуется больше, фосфофруктокиназная активность усиливается, даже если концентрация фрукто-зо-6-фосфата очень низка (об этом свидетельствует тот факт, что зависимость [c.465]

    ГЛИКОЛИЗ ингибируется за счет либо фосфофруктокиназы, либо пируваткиназы (в зависимости от условий). В то же время при низких концентрациях АТР кажущееся сродство пируваткиназы к фосфоенолпирувату возрастает, и это позволяет ферменту переносить фосфатные группы от фосфоенолпирувата на ADP даже при относитфьно низкой концентрации фосфоенолпирувата. Некоторые аминокислоты также действуют как модуляторы пируваткиназной активности, главным образом в печени. [c.466]

    Выше мы видели, что АТР и ADP являются модуляторами важных регуляторных ферментов, участвующих в гликолизе, цикле лимонной кислоты и окислительном фосфорилировании АТР действует как отрицательный модулятор, а ADP обычно стимулирует катаболизм углеводов. Вследствие этого любое изменение отношения действующих масс [ATP]/[ADP] [PJ, в норме весьма высокого, может соответствующим образом изменять также и активность некоторых регуляторных ферментов центральных катаболических путей. Имеются, однако, среди этих ферментов и такие, для которых положительным модулятором служит АМР. Чтобы оценить участие в метаболической регуляции наряду с АТР и ADP также и АМР, Даниэль Аткинсон ввел понятие энергетического заряда и использовал его в качестве одной из характеристик энергетического состояния клеток. Энергетический заряд есть мера заполнения всей аденинну-клеотидной системы (т.е. суммы АТР, ADP и АМР) высокоэнергетическими фосфатными группами  [c.541]

    Фруктозодифосфатаза имеет молекулярную массу 150000 и для проявления активности нуждается в ионах Mg . Это тоже регуляторный фермент. Он резко ингибируется отрицательным модулятором АМР, а положительным модулятором служит для него АТР. [c.605]

    Ранее мы видели, что расщепление гликогена регулируется посредством ковалентной и аллостерической модуляции гликоген-фосфорилазы (разд. 15.11). Фосфорилаза а, активная форма фермента, содержащая существенные для каталитической активности фосфорилированные остатки серина, дефосфорили-руется под действием фосфатазы фосфорилазы и превращается в фосфорилазу Ь-значительно менее активную форму, которую может активировать АМР (ее аллостерический модулятор). Киназа фосфорилазы превращает фосфорилазу Ь снова в фосфорилазу а за счет АТР, фосфорилирующего упомянутые остатки серина. [c.614]

    Скорость биосинтеза жирных кислот определяется главным образом скоростью ацетил-СоА-карбоксилазной реакции, в результате которой образуется малонил-СоА. Ацетил-СоА—карбоксилаза-это аллостерический фермент, который в отсутствие цитрата, играющего роль активирующего модулятора, проявляет очень низкую активность. Повышение концентрации цитрата в митохондриях приводит к тому, что при помощи челночного механизма он начинает поступать в цитозоль. Появление цитрата в цитозоле служит аллостерическим сиг- [c.634]

Рис. 22-9. Аллостерическое ингибирование глутаминсинтетазы у Е. соИ. У этого организма глутамин является предшественником указанных здесь продуктов. Все они способны ингибировать фермент по типу обратной связи. Такое действие нескольких отрицательных модуляторов называется согласованным ингибированием. Глутаминсинтетаза резко ингибируется также избытком АТР, под влиянием которого она переходят в неа ивную форму вследствие ковалентной модификации тех остатков тирозина в ее субъединицах, которые важны для каталитической активности. В животных тканях активность глутаминсинтетазы регулируется гораздо более простым способом. Рис. 22-9. <a href="/info/97084">Аллостерическое ингибирование</a> глутаминсинтетазы у Е. соИ. У этого организма глутамин является предшественником указанных здесь продуктов. Все они <a href="/info/623013">способны ингибировать</a> фермент по <a href="/info/765312">типу обратной связи</a>. Такое <a href="/info/1602242">действие нескольких</a> <a href="/info/1402604">отрицательных модуляторов</a> называется согласованным ингибированием. Глутаминсинтетаза резко <a href="/info/402525">ингибируется также</a> избытком АТР, под влиянием которого она переходят в неа <a href="/info/1376732">ивную</a> форму вследствие <a href="/info/100411">ковалентной модификации</a> тех остатков тирозина в ее субъединицах, которые важны для <a href="/info/3231">каталитической активности</a>. В <a href="/info/104304">животных тканях</a> активность глутаминсинтетазы регулируется гораздо <a href="/info/1673469">более простым</a> способом.
    Модуляторы ферментов делятся на два класса. Положительные модул.чторы, как это следует из их названия, повышают активность ферментов, тогда как отрицательные модуляторы оказывают противоположное действие. Ферменты, рег Л 1руемые модуляторами, называются регуляторными. Не все ферменты являются в этом смысле регуляторными, н мы увидим, что положение регуляторных ферментов в метаболических последовательностях играет ключевую роль в механизмах, регулирующих обмен веществ. [c.18]

    А. Предполагаемая структура аспартат —карбамоилтрансферазы . o/i. В состав частицы входят 2 каталитических протомера (из трех С-субъединиц каждый) и 3 регуляторных протомера (из двух -субъединиц кал дыи). Фермент показан в неактивной конформации, образующейся под действием ЦТФ, и в активной конформации, образованию которой способствует АТФ. Присоединение ЦТФ ведет к изменению области связей между цепями R и С области других связей (С С и R R) ие изменяются. В. Кривые насыщения аспартатом для аспартат —карбамоилтрансферазы в присутствии отрицательного модулятора (ЦТФ) и положительного модулятора (АТФ). [c.133]


Смотреть страницы где упоминается термин Ферменты модуляторы активности: [c.147]    [c.257]    [c.97]    [c.15]    [c.62]    [c.550]    [c.261]    [c.263]    [c.389]    [c.472]    [c.488]    [c.494]    [c.495]    [c.22]    [c.23]    [c.131]    [c.185]   
Биохимия человека Т.2 (1993) -- [ c.90 ]

Биохимия человека Том 2 (1993) -- [ c.90 ]




ПОИСК





Смотрите так же термины и статьи:

Активность фермента

Активные ферментов



© 2025 chem21.info Реклама на сайте